
大数据助力我国经济转型:打破多重因素 准确定位是先决条件
10月29日消息,国务院于9月印发《促进大数据发展行动纲要》,系统部署大数据发展工作。记者通过在贵州、安徽、北京、湖北等地采访了解到,在新常态背景下,为找到结构调整、动能转换那把“金钥匙”,从东部沿海到西部内陆,众多省份都不约而同瞄准大数据这一信息技术前沿领域,将其视为弯道超车、加速发展的新蓝海。大数据作为国家间、企业间的竞争焦点,正在引发深刻技术与商业变革,亦在我国经济转型发展中释放出令人欣喜的新动能。目前我国大数据的发展依然任重道远,还有不少问题需要面对和破解。
记者在贵州、安徽、北京等大数据先行先试的省市采访,不少专家、企业家和地方领导干部提出,大数据是朝阳产业和“未来能源”,这一新兴领域能不能成为我国信息技术由“跟跑者”向“领跑者”转型,取决于产业能否健康发展、核心技术能否真正突破、壁垒鸿沟能否真正打破等多重因素,亟待深化认识精准判断,制定科学有效的战略规划。
大数据产业应科学布局 合理规划
首先,要警惕“一哄而上、一哄而散”,科学布局合理规划产业发展。
“大数据是蓝海、是机遇,但一定要防止重演过去很多产业‘一哄而上、一哄而散’的教训,避免发生颠覆性的错误。”贵州省委常委、贵阳市委书记陈刚说,数据中心对气候条件、温度环境、地质安全和能源供给等要素依赖性很高,不可能遍地开花。但目前这一产业已经开始出现一窝蜂上马的苗头,对此应高度警惕,科学制定国家产业规划和战略布局。
国家超算天津中心应用研发部主任孟祥飞说,国内现在大数据概念有越炒越热的趋势,要清醒认识到很多所谓“数据中心”其实只是“数据孤岛”,根本没有形成产业体系。阿里云总裁胡晓明表示,要警惕当前各地互联网数据中心建设的泛滥现象,有的地方,市、县、乡都在搞“大数据、云计算”,全民大数据容易导致新一轮硬件建设大比拼,造成资源浪费。
10月29日消息,国务院于9月印发《促进大数据发展行动纲要》,系统部署大数据发展工作。记者通过在贵州、安徽、北京、湖北等地采访了解到,在新常态背景下,为找到结构调整、动能转换那把“金钥匙”,从东部沿海到西部内陆,众多省份都不约而同瞄准大数据这一信息技术前沿领域,将其视为弯道超车、加速发展的新蓝海。大数据作为国家间、企业间的竞争焦点,正在引发深刻技术与商业变革,亦在我国经济转型发展中释放出令人欣喜的新动能。目前我国大数据的发展依然任重道远,还有不少问题需要面对和破解。
记者在贵州、安徽、北京等大数据先行先试的省市采访,不少专家、企业家和地方领导干部提出,大数据是朝阳产业和“未来能源”,这一新兴领域能不能成为我国信息技术由“跟跑者”向“领跑者”转型,取决于产业能否健康发展、核心技术能否真正突破、壁垒鸿沟能否真正打破等多重因素,亟待深化认识精准判断,制定科学有效的战略规划。
大数据产业应科学布局 合理规划
首先,要警惕“一哄而上、一哄而散”,科学布局合理规划产业发展。
“大数据是蓝海、是机遇,但一定要防止重演过去很多产业‘一哄而上、一哄而散’的教训,避免发生颠覆性的错误。”贵州省委常委、贵阳市委书记陈刚说,数据中心对气候条件、温度环境、地质安全和能源供给等要素依赖性很高,不可能遍地开花。但目前这一产业已经开始出现一窝蜂上马的苗头,对此应高度警惕,科学制定国家产业规划和战略布局。
国家超算天津中心应用研发部主任孟祥飞说,国内现在大数据概念有越炒越热的趋势,要清醒认识到很多所谓“数据中心”其实只是“数据孤岛”,根本没有形成产业体系。阿里云总裁胡晓明表示,要警惕当前各地互联网数据中心建设的泛滥现象,有的地方,市、县、乡都在搞“大数据、云计算”,全民大数据容易导致新一轮硬件建设大比拼,造成资源浪费。
规范大数据行业制度 加快模式创新
再次,产业标准、统计体系等缺失制约发展,亟待加快模式创新。
贵阳大数据交易所总裁王叁寿说,我国目前缺乏对各类数据的统一标准规范及大规模自动化处理手段,数据流通平台仍局限在特定行业或领域内,不同用户对于数据价值的认知仍有较大差异。
由于政府部门条线分割严重、缺乏数据存储规范标准,企业即使拿到的公共大数据也十分杂乱,融合成本高昂。很多记录下来的数据没有规范化,也没有对数据存储进行设计,即使在同一个行业,数据也是千奇百怪。
安徽省经信委软件处处长程英春说,目前云计算、大数据标准体系尚不完备,评估评测环节不健全,公共支撑体系有待完善,特别是政府在采购云计算服务方面,受传统的预算、采购制度限制,以及缺乏相应安全、服务和管理标准规范等,存在采购单位“不敢买”“不能买”等现象。部分行业领域市场门槛高,自主云计算产品和服务进入困难。
贵阳大数据战略重点实验室主任连玉明说,当前一些地方政府缺乏“数据治理”意识,一时还难以改变靠经验判断的惯性思维。
受访专家表示,各级政府部门应制定清晰的大数据、云计算顶层设计,从数据主权、数据创新能力、关键技术、人才、数据研究、覆盖全行业的产业链、法制环境支持等关键要素入手,研究大数据发展趋势,评估大数据对政府、经济与社会运行所带来的革命性影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03