
大数据时代的商业逻辑
所谓数据挖掘(Data Mining),是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。根据科技研究公司IDC的 估测,全球数据的规模如今每两年就会增长一倍。随之而来的剧变体现为4个V的变化。第一,数据体量(Volume)巨大,从TB级别跃升到PB级别;第 二,数据类型(Variety)繁多,网络日志、视频、图片、地理位置信息等等都成为新的庞大数据源泉。第三,价值(Value)密度低,以视频为例,连 续不间断监控过程中,有用的数据可能仅仅有一两秒。第四,处理速度(Velocity)快,“1秒定律”和传统的数据挖掘技术有着本质的不同。
显然,“大数据”的崛起为商业洞开了一扇新的大门。
毋庸置疑,数据至上的思考方式早已为方方面面带来很高的回报。譬如:沃尔玛等超级零售商早已开始对销售额、定价以及经济学、人口统计 学和天气数据进行分析,藉此在特定的连锁店中选择合适的上架产品,并基于这些分析来判定商品减价的时机;UPS等货运公司也正在对卡车交货时间和交通模式 等相关数据进行分析,以此对其运输路线进行微调。而一些社交型交友网站也经常会仔细查看其网站上列出的个人特征、回应和交流信息,用来改进其算法,为想要 约会的男女提供更好的配对……而如今的“海量数据”,更在规模和范围上带来转折:物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球 各个角落的传感器,无一不是数据来源或者承载的方式。它们因“数据”集结在一起,进而变成企业未来价值升级所需关注的新竞争领域。
美国麻省理工学院斯隆管理学院的经济学教授埃里克·布吕诺尔夫松曾把“大数据”的潜在影响力比喻成“显微镜式的一场数据测量革命”。 在商业、经济及其他领域中,决策行为将日益基于数据和分析而作出,而并非基于经验和直觉。研究报告称,数据指导下的管理活动正在企业界中蔓延开来,而且这 种管理活动正开始获得回报。“那些采用‘数据驱动型决策’模式的公司能将其生产力提高5%~6%,这种生产力的提高是很难用其他因素来解释的。”
据悉,仅仅在美国,就面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。麦肯锡全球研究院的分析表明,为了充分利用海量数据的潜力,企业和政策制定者必须克服以下的挑战:
1.使海量数据更容易获得和更具时效性。在制造业,对来自研发、设计和制造单元的数据资料进行整合,以推动并行工程,可以缩短产品上市时间。
2.利用数据和实验揭示可变性和提高绩效。随着企业以数字形式创建和存储的交易资料越来越多,它们可以收集更准确、更详尽的绩效信息,包括从产品库存到员工病假天数的各种信息。
3.对消费人群进行细分,量身定制服务。海量数据使企业能够创建分类更精细的细分市场,并量身定制恰当的服务,更好地满足消费者需求。
4.利用自动化算法替代和支持人工决策。先进的分析算法可以大大提高决策效率和质量,减小风险,并发掘出隐藏的、有价值的洞见。
5.创造新的业务模式、产品和服务。为了提高下一代产品的开发水平,以及创建具有创新性的售后服务,制造商正在充分利用从产品使用中获得的数据。而实时定位数据的出现,已经创造了从导航定位到个人跟踪的一系列基于位置的全新移动服务。
针对上述话题,本期封面将关注以下几个关键的问题:数据时代,企业新的利润从哪里来?大数据时代新的商业思维模式为何?如何利用“大 数据”为社会化营销助力?传统企业(诸如企业招聘)如何借数据技术实现资源的优化配置……而所有这些问题的归宿都是同一个命题:大数据时代,究竟谁能赢, 如何赢?
数据已经坐到了驾驶员的位置上,它就在那里,有用且宝贵,甚至还很性感而时尚。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03