京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的商业逻辑
所谓数据挖掘(Data Mining),是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。根据科技研究公司IDC的 估测,全球数据的规模如今每两年就会增长一倍。随之而来的剧变体现为4个V的变化。第一,数据体量(Volume)巨大,从TB级别跃升到PB级别;第 二,数据类型(Variety)繁多,网络日志、视频、图片、地理位置信息等等都成为新的庞大数据源泉。第三,价值(Value)密度低,以视频为例,连 续不间断监控过程中,有用的数据可能仅仅有一两秒。第四,处理速度(Velocity)快,“1秒定律”和传统的数据挖掘技术有着本质的不同。
显然,“大数据”的崛起为商业洞开了一扇新的大门。
毋庸置疑,数据至上的思考方式早已为方方面面带来很高的回报。譬如:沃尔玛等超级零售商早已开始对销售额、定价以及经济学、人口统计 学和天气数据进行分析,藉此在特定的连锁店中选择合适的上架产品,并基于这些分析来判定商品减价的时机;UPS等货运公司也正在对卡车交货时间和交通模式 等相关数据进行分析,以此对其运输路线进行微调。而一些社交型交友网站也经常会仔细查看其网站上列出的个人特征、回应和交流信息,用来改进其算法,为想要 约会的男女提供更好的配对……而如今的“海量数据”,更在规模和范围上带来转折:物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球 各个角落的传感器,无一不是数据来源或者承载的方式。它们因“数据”集结在一起,进而变成企业未来价值升级所需关注的新竞争领域。
美国麻省理工学院斯隆管理学院的经济学教授埃里克·布吕诺尔夫松曾把“大数据”的潜在影响力比喻成“显微镜式的一场数据测量革命”。 在商业、经济及其他领域中,决策行为将日益基于数据和分析而作出,而并非基于经验和直觉。研究报告称,数据指导下的管理活动正在企业界中蔓延开来,而且这 种管理活动正开始获得回报。“那些采用‘数据驱动型决策’模式的公司能将其生产力提高5%~6%,这种生产力的提高是很难用其他因素来解释的。”
据悉,仅仅在美国,就面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。麦肯锡全球研究院的分析表明,为了充分利用海量数据的潜力,企业和政策制定者必须克服以下的挑战:
1.使海量数据更容易获得和更具时效性。在制造业,对来自研发、设计和制造单元的数据资料进行整合,以推动并行工程,可以缩短产品上市时间。
2.利用数据和实验揭示可变性和提高绩效。随着企业以数字形式创建和存储的交易资料越来越多,它们可以收集更准确、更详尽的绩效信息,包括从产品库存到员工病假天数的各种信息。
3.对消费人群进行细分,量身定制服务。海量数据使企业能够创建分类更精细的细分市场,并量身定制恰当的服务,更好地满足消费者需求。
4.利用自动化算法替代和支持人工决策。先进的分析算法可以大大提高决策效率和质量,减小风险,并发掘出隐藏的、有价值的洞见。
5.创造新的业务模式、产品和服务。为了提高下一代产品的开发水平,以及创建具有创新性的售后服务,制造商正在充分利用从产品使用中获得的数据。而实时定位数据的出现,已经创造了从导航定位到个人跟踪的一系列基于位置的全新移动服务。
针对上述话题,本期封面将关注以下几个关键的问题:数据时代,企业新的利润从哪里来?大数据时代新的商业思维模式为何?如何利用“大 数据”为社会化营销助力?传统企业(诸如企业招聘)如何借数据技术实现资源的优化配置……而所有这些问题的归宿都是同一个命题:大数据时代,究竟谁能赢, 如何赢?
数据已经坐到了驾驶员的位置上,它就在那里,有用且宝贵,甚至还很性感而时尚。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11