京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的商业逻辑
所谓数据挖掘(Data Mining),是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。根据科技研究公司IDC的 估测,全球数据的规模如今每两年就会增长一倍。随之而来的剧变体现为4个V的变化。第一,数据体量(Volume)巨大,从TB级别跃升到PB级别;第 二,数据类型(Variety)繁多,网络日志、视频、图片、地理位置信息等等都成为新的庞大数据源泉。第三,价值(Value)密度低,以视频为例,连 续不间断监控过程中,有用的数据可能仅仅有一两秒。第四,处理速度(Velocity)快,“1秒定律”和传统的数据挖掘技术有着本质的不同。
显然,“大数据”的崛起为商业洞开了一扇新的大门。
毋庸置疑,数据至上的思考方式早已为方方面面带来很高的回报。譬如:沃尔玛等超级零售商早已开始对销售额、定价以及经济学、人口统计 学和天气数据进行分析,藉此在特定的连锁店中选择合适的上架产品,并基于这些分析来判定商品减价的时机;UPS等货运公司也正在对卡车交货时间和交通模式 等相关数据进行分析,以此对其运输路线进行微调。而一些社交型交友网站也经常会仔细查看其网站上列出的个人特征、回应和交流信息,用来改进其算法,为想要 约会的男女提供更好的配对……而如今的“海量数据”,更在规模和范围上带来转折:物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球 各个角落的传感器,无一不是数据来源或者承载的方式。它们因“数据”集结在一起,进而变成企业未来价值升级所需关注的新竞争领域。
美国麻省理工学院斯隆管理学院的经济学教授埃里克·布吕诺尔夫松曾把“大数据”的潜在影响力比喻成“显微镜式的一场数据测量革命”。 在商业、经济及其他领域中,决策行为将日益基于数据和分析而作出,而并非基于经验和直觉。研究报告称,数据指导下的管理活动正在企业界中蔓延开来,而且这 种管理活动正开始获得回报。“那些采用‘数据驱动型决策’模式的公司能将其生产力提高5%~6%,这种生产力的提高是很难用其他因素来解释的。”
据悉,仅仅在美国,就面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。麦肯锡全球研究院的分析表明,为了充分利用海量数据的潜力,企业和政策制定者必须克服以下的挑战:
1.使海量数据更容易获得和更具时效性。在制造业,对来自研发、设计和制造单元的数据资料进行整合,以推动并行工程,可以缩短产品上市时间。
2.利用数据和实验揭示可变性和提高绩效。随着企业以数字形式创建和存储的交易资料越来越多,它们可以收集更准确、更详尽的绩效信息,包括从产品库存到员工病假天数的各种信息。
3.对消费人群进行细分,量身定制服务。海量数据使企业能够创建分类更精细的细分市场,并量身定制恰当的服务,更好地满足消费者需求。
4.利用自动化算法替代和支持人工决策。先进的分析算法可以大大提高决策效率和质量,减小风险,并发掘出隐藏的、有价值的洞见。
5.创造新的业务模式、产品和服务。为了提高下一代产品的开发水平,以及创建具有创新性的售后服务,制造商正在充分利用从产品使用中获得的数据。而实时定位数据的出现,已经创造了从导航定位到个人跟踪的一系列基于位置的全新移动服务。
针对上述话题,本期封面将关注以下几个关键的问题:数据时代,企业新的利润从哪里来?大数据时代新的商业思维模式为何?如何利用“大 数据”为社会化营销助力?传统企业(诸如企业招聘)如何借数据技术实现资源的优化配置……而所有这些问题的归宿都是同一个命题:大数据时代,究竟谁能赢, 如何赢?
数据已经坐到了驾驶员的位置上,它就在那里,有用且宝贵,甚至还很性感而时尚。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29