
大数据 银行风险管理的“金钥匙”
数据越丰富则分析结果会越强大,大数据分析及相关分析数据迎来了黄金期。
随着数据量的增大以及数据多样性的增强,如何驾驭好这些数据让它更好的为决策服务、减少损失以及增加收益变得越来越重要。银行的业务经营依托于对风险的评估,以及对评估结果加以利用。这对当下的银行管理者提出更高的要求,包括分析获取可信的数据以及与公司员工分享得到的结果。
风险一直在增长
正如最近一些头条所指出的,风险的复杂性在增加,这种复杂性遍布于银行业的各个角落。银行业的集中度越来越高,更多的大型机构要协调不同层级和维度的关系,包括产品、流程、技术、组织架构以及合同等。金融创新带来了新的工具,不同市场之间的关联性增强也带来更频繁的跨界信息流动。由此带来的问题是,当风险出现的时候,市场的波动率会瞬时增加,从而造成会带来巨大流动性风险的“波动聚类(Volatility Clustering)”,就像2007—2009年的金融危机以及2001年的互联网泡沫破裂那样。
显然,银行业的风险非常广泛。“我们已经定义了13种系统性风险:网络风险、高频交易风险、对手风险、担保风险、流动性风险等等,同时我们也从如此多的大型银行的清算和结算活动中总结出一整类的关联性风险定义”。Mike Leibrock说,Mike是美国存款信托清算公司(DTCC)负责系统风险的副总裁(DTCC为所有的大型银行提供清结算服务)。
作为监管者,当然也包括他们监管的机构,还是像之前一样关注与识别和管理金融系统中的潜在风险,同时数据的管理实践也在不断变化。
大数据的潜力
银行在处理储存在他们数据库的数据方面都是专家。他们能够从把每天发生的数据整理成报告提供给中台和前台人员,供他们研究最新的市场趋势。
大数据是不同的。它数量巨大、形式多样并具有瞬时性,它可以从移动设备、社交应用、网页访问以及第三方获取,包括信用消费等方面的数据。它可以帮人们揭示那些连专家都不易察觉到的潜在消费习惯。大数据能够帮助银行从更细致的层面上发掘潜在的风险,可以细致到单一客户、产品以及投资组合水平,有些甚至可以更细致,达到信用审批以及定价层面。
为了了解更多关于大数据和银行风险管理的关系,EIU调查了6大洲55个国家的208位风险及合规管理上的高管,涵盖了零售银行(29%)、商业银行(43%)、投资银行(28%)。结果显示越来越多的银行界开始倾向于使用大数据,但他们仍然面临着一些挑战,主要是将分析结果应用在更高级的风险管理中,尤其是流动性风险和信用风险。
调查要求高管们为他们自己的机构打分,主要在控制以及缓解风险方面。结果显示了如下的一些相同点,包括:
基本的大数据工具来进行整理和获取那些有序及无序的数据(有35%高于平均分及7%低于平均分的高管选择了此项);更高级的大数据工具来进行预测和视觉化分析(有33%高于平均分及8%低于平均分的高管选择了此项)。
换句话说,那些表现更好的银行更喜欢使用多种不同的方法来进行风险分析,包括基础的和高级的分析工具。更进一步说,他们也更喜欢靠大量的数据解决风控问题。
支持风险管理的大数据投资
除了来自四个区域,受访者还来自三类机构:43%的商业银行,剩下的一半来自零售银行,一半来自于投资银行。相比较于其他类型的风险,三类机构的受访者均更加关注流动性风险和信用风险。同时,随着行业和地区的不同,他们赋予不同风险的重要性不同。
在所有地区和行业中,绝大部分银行已经或者很快在支持风险管理中投资大数据。五分之四的银行(81%)定期向高级管理人员提供关于银行风险状况的综合报告,另外有15%的银行打算在未来三年内也这样做。几乎所有银行都在致力于推动风险管理信息至银行高级决策者。但问题是他们是否获取到了正确的大数据工具并且真正有效。
仅仅过了十分之四的受访者创建风险概况时,拥有整合、操作和质疑大数据的能力。近半数的受访者在未来三年有计划在这些工具上进行投资。
先进的大数据工具的占比稍微有些低。例如,预测分析和数据可视化:41%的正在使用它们,44%的预计在未来三年内获取它们。
尽管如此,来自各大洲的绝大多数的零售银行、商业银行和投资银行都致力于利用大数据的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30