京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚焦大数据时代的漏洞分析与风险评估
在大数据时代中,新技术创新发展的历史机遇夹杂着安全风险与挑战扑面而来,对网络与信息安全保障提出了新的要求,对信息安全漏洞的挖掘分析和对网络安全风险的综合管控愈显重要和关键。近日,第八届信息安全漏洞分析与风险评估大会(VARA2015)召开。主题探讨是“大数据时代的漏洞分析与风险评估技术”,会议由中国信息安全测评中心主办,北京交通大学承办,清华大学协办。来自政府部门、高等院校、研究机构、信息安全产业界及应用单位的800余名嘉宾参加了活动。
中国信息安全测评中心李守鹏副主任作为大会主持,中国信息安全测评中心朱胜涛主任和北京交通大学校长宁滨分别致欢迎辞,中央网信办网络安全协调局胡啸副局长做了重要发言。中国工程院院士何德全、两院院士王越、中国工程院院士倪光南、费爱国,中国信息安全测评中心党委书记吴世忠出席本次大会,何院士和倪院士做了重要发言。国家发改委高技术产业司王娜处长进行了“促进大数据创新发展,强化大数据安全保障”的主题演讲。国家信息安全主管部门、国家相关部委、专家学者、大型行业、知名企业代表分别围绕此次大会主题分享该领域理论、方法、技术和实践的最新成果。
同时,此次大会举行了中国国家信息安全漏洞库(CNNVD)第三批技术支撑单位授牌仪式,十三家单位分别获得漏洞库一、二、三级支撑单位称号。其中一级共三家:中电长城网际系统应用有限公司、北京云间有道科技有限公司、北京江南天安科技有限公司;二级共三家:北京安信天行科技有限公司、北京锦龙信安科技有限公司、北京永信至诚科技有限公司;三级共七家:北京中测安华科技有限公司、上海斗象信息科技有限公司、深圳百密信安科技有限公司、北京洋浦伟业科技发展有限公司、远江盛邦(北京)信息技术有限公司、成都科来软件有限公司、东巽科技(北京)有限公司。此外,为了更好地表彰和奖励在工作岗位上做出卓越贡献的CISP持证人员,进一步推进信息安全专业人才培养工作体系的建设,中国信息安全测评中心CISP运营中心联合《中国信息安全》杂志共同举办了首届“CISP杰出人物”评选活动。大会对10位评选出的“CISP杰出人物”进行颁奖,他们是:中国联通河北省分公司高级工程师孔令飞,中石化信息化管理部工程师刘远,杭州安恒信息技术有限公司首席安全官刘志乐,江苏天创科技有限公司总经理任国强,中国保险信息技术管理有限责任公司高级工程师杨磊,中国信息安全测评中心副研究员班晓芳,深圳市安络科技有限公司总裁谢朝霞,北京江南天安科技有限公司部门经理程娜,北京邮电大学信息安全中心信息安全系副主任雷敏,北京永信至诚科技有限公司董事长蔡晶晶。
本次会议分别设立了“漏洞分析”、“风险评估”、“大数据安全分析”和"互联网+"时代下的信息安全”四个分会场,展开专题研讨。从多角度、多层面反映了大数据时代下漏洞分析新技术和新方法,展现了复杂网络与系统环境下风险评估的新思路和新实践,沟通了工控系统信息安全技术发展与测评工作的新进展,从更宽的视野探讨了信息安全积极防御的新举措。
网络空间已日益成为国际竞争的战略制高点,网络安全事关各国未来繁荣与发展的核心利益。近年来,信息技术软硬件漏洞正在成为全球各类信息安全问题的主要源头,高度依赖网络信息系统的社会和经济运行正在面临黑客攻击等网络犯罪行为的严重侵袭。我国抓住全球化、信息化的发展机遇,趋利避害,综合实力不断增强,现已成为全球信息化发展大国。但是随着信息化进程的持续深入推进,网络与信息安全问题凸显,成为我国面临的新的综合挑战。
作为信息安全领域业界专家、学术研究人员和政府、行业及用户交流的重要平台,信息安全漏洞分析与风险评估大会之前已成功举办七届,为及时、全面反映我国在信息安全漏洞分析和风险评估领域的创新成果和研究能力,探索国家信息安全保障新思路、新方法,推动信息安全技术进步,促进信息安全保障水平提升正发挥着愈来愈重要的作用。本届大会的成功召开,为信息安全领域的技术探索、产业进步与应用推进的融合发展链接了协作的桥梁,为分享相关领域在理论、方法、技术、标准和实践等方面的最新成果与研究进展提供了一个良好的沟通与交流平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04