
企业应该如何在大数据基础架构方面做出选择
如果询问十家公司他们为了运行大数据负载需要使用怎样的基础架构,那么可能会得到十种不同的答案。现在这个领域当中几乎没有可以遵循的原则,甚至没有可以参考的最佳实践。
不管是从资源还是从专业性方面来说,大数据分析已经成为基础架构领域当中真正的难题。顾名思义,大数据分析工具所针对的数据集合,规模将会非常庞大,并且需要大量的计算、存储和网络资源来满足性能需求。但是这些大数据工具通常是由超大规模企业开发的,这些企业并不存在普通企业需要考虑的同等级安全问题和高可用性问题,而主流IT企业还没有深入了解这些工具,再加上大数据在投资回报率方面的不确定性,导致只有非常少的企业愿意在大数据方面进行投入。
此外,即便对于曾经在Hadoop、Spark和类似产品上运行过大数据集群的部分企业来说,也会在大数据基础架构方面遇到技术和业务方面的挑战。
大数据带来大问题
一家大型远程通讯提供商正在构建一种新的数字服务,预计在今年年底正式推出,并且准备使用Hadoop来分析这种服务所产生的内容、使用情况和收入(广告服务)数据。但是由于这种服务是全新的,因此很难分析应该使用哪种大数据基础架构,负责这个项目的技术副总裁表示。
“对于一个还没有推出的项目来说,我们不可能进行任何容量规划,”他说。
确实,现在很多大数据项目仍然处于初级阶段。“大多数大数据项目的性质比我们想象的还要低,” 可扩展存储基础架构提供商Coho Data CTO Andrew Warfield表示。
即便企业还不是十分了解大数据技术,但这并不意味着企业不应该在大数据方面投入精力。“但是运行这种技术可能面临着很大风险,提前认识到这点非常重要,” Warfield说,他认为企业应该提前考虑基础架构方面的因素。
对于这家远程通讯提供商来说,他们将会采用一种渐进的方式,使用来自于BlueData Software的软件在商用硬件环境当中运行大数据集群,这样就能够从现有的存储系统上访问数据了。
无处不在的数据
如果数据来自于云,那么当然可以直接在云中进行分析;如果数据全部位于本地,那么底层的基础架构也应该位于本地。但是如果数据分散在不同位置,那么无疑会使得基础架构更加复杂。
远程通讯提供商的服务将会同时使用来自于云和本地的数据。对于任何大数据解决方案来说,考虑到合规性、节省时间和网络带宽等因素,能够同时支持两种数据来源都是十分重要的。“同步生产环境当中的数据是一件非常困难的事情,”这位副总裁说,“我们希望将所有的实例全都指向一个单一数据源。”
此外,虽然数据科学家想要分析的信息是可用的,但是现在还不能进行使用,因为其位于大数据计算工具无法访问的存储基础架构当中,Warfield说。一种解决方案是存储硬件使用Hadoop Distributed File System或者RESTful API这样的协议公开这些数据。
注意延迟
对于特性类型的大数据分析来说,将数据从存储阵列移动到计算环境所花费的时间将会对性能造成严重影响。但是如果不将数据跨越整个网络移动到计算环境当中,而是将应用程序移动到数据附近以降低延迟,将会怎样呢?
将计算环境移动到数据附近并不是一种全新的概念,但是现在出现了一种前所未有的实现方式:Docker。比如Coho Data和Intel通过合作证明了这种概念的有效性,在一个大型金融服务公司当中,使用Docker格式封装计算节点,之后在上面直接运行Hadoop负载。
在存储阵列上直接运行Docker容器,这样做的意义在于直接对附近的数据进行分析,而不再需要跨网络移动数据,同时利用任何可用的计算资源。“相比于其他存储平台来说,大数据平台的CPU使用率通常会很高,” Warfield说。“更何况如果你将闪存加入其中,那么问题就会变成‘我该如何从这种资源当中获得更多价值?’”
直接在存储阵列当中运行容器化应用程序是一件非常有趣的事情,但是需要提前对负载进行认真评估,以确保其能够很好地适应当前环境,为建筑行业提供文档管理服务的Signature Tech Studios公司副总裁Bubba Hines说。这种服务基于Amazon Web Services,使用来自于Zadara Storage的存储服务。这家公司最近开始评估新的Zadara Container Service,其中容器化应用程序运行在存储阵列上,可以直接访问本地磁盘。根据Hines的想法,现在有几种可能的使用情况:在存储阵列上运行其灾难恢复软件的容器版本来持续监控用户数据和工作方面的变化,更改或者验证主要存储数据。
但是如果使用Zadara Container Service处理全部数据将没有什么意义。Signature Tech Studio的系统正在按照计划执行数据转换,并且已经实现大规模容器化了。但是“我们可能不会将所有Docker容器移动到Zadara容器服务当中,因为从体积和规模方面考虑这样做并没有意义,”Hines说。“我们必须寻找能够真正从降低延迟当中获利的负载。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01