
教你如何看数据分析
现在说分析数据,好像已经成了互联网那个从业者的口头禅,做产品的,运营的,市场的口口声声都在说数据怎么样,但是了解数据的真正含义,读懂数据的人确实不多。之前跟一个之前在国内最大的数字商品交易平台的同事大哥在一起好好地聊了下,很有收获。
对于数据,有一个共识就要会看数据,通过合理及透彻的分析来驱动产品,运营及市场策略的调整。但是这些知识看数据的中级阶段,高级阶段则是通过庞大的 多维度的数据分析,能够预测到未来一个季度,半年甚至一年的业务走势,当然预测可以有一定的偏差在里面。还有的就是如果要进入到新业务的扩张上,那么能够 计算出未来的一定周期内需要有多大的资金投入量,人员投入量,市场及运营资源投入等达到一个什么样的规模,或者说反推,我想达到这样的规模那么需要多少投 入,多长时间。这个是最高阶段,在一般情况下也许根本不会触及到这个方面,少部分能够做到中级阶段基本上已经算是极限了。
互联网的有诸多领域,每个领域关注的点都不一样。我这边先从熟悉的社区和电子商务两个领域来说起。说到数据首先就是要去了解统计数据、分析数据的维度 是有哪些。个人认为一般是有用户的维度,运营的维度,在社区来说还有内容的维度,在电子商务内部有运营的维度,我把推荐的单拎出来作为一个维度。
一 用户的维度
从用户的维度来看网站数据,其实就是通常所说的网站分析层面。这个维度主要来看用户是通过什么渠道来到网站,在网站用户的行为是什么,主要的目地为市 场人员提供推广效果依据,以及帮助产品人员来分析指南各个网站上哪些页面,哪些区域及模块最能够吸引用户并及时进行策略调整。
网站分析的第一个数据点用户来源渠道,用户是从哪些渠道来到我们的网站上。是直接输入网站地址,是从收藏夹中打开收藏链接,还是在搜索引擎上搜索过来 (那么前二十的搜索关键词都有哪些)。抑或是从微博、各个论坛等一些新媒体上点击我们网站链接进来的。如果网站现阶段也在做市场推广,最好的就是每一个放 出去的链接都应该带有独立统计标识,这样能够清楚地看到不同的媒体上不同的广告位置的流量怎么样。这样市场人员可以通过这些数据来发现能够为网站带来稳定 流程的渠道,同时剔除掉效果不好的渠道。上面说的前二十的搜索关键词也是做SEM确定关键词的一个重要来源。
第二个数据点是用户在网页上行为,就是用户通过各种不同的方式来到我们网站上后,常有的着陆页面是哪些,这些页面都有什么特点需要好好分析一下。重点 关注用户在页面上的点击行为,一般用户会看几屏,点击哪些按钮或者链接的概率大,在各个页面上的停留时间是怎么样的。这些数据产品人员需要多关注,通过分 析用户在各个网页上的行为,能为我们做产品决策提供很大的依据。
第三个点在用户访问路径上,主要是用户从进入着陆页上之后,陆续会到哪些页面上,最后在哪些页面上进行注册登录操作,在哪些页面上跳出。由这些数据可 以清晰地勾勒出典型用户的访问路径图,在结合用户来源渠道一起来分析,就能找到那些渠道上的用户来到网站之后,访问深度最高,转化率从最高,这样市场人员 也可以及时调整策略,对这些流量大,效果好的渠道加大推广力度。
第四个点是注册流程,一般来说很多网站的注册流程并不是很短,都需要至少两步,有的能到三四步,重点关注这个是因为注册流程繁琐,那么你的推广做到再 好网站各个模块再易用,最后的转化率照样惨不忍睹。通过对这个流程的监测,可以看到有意愿注册的用户到底在哪些环节流失了,是不是填写信息太多,是不是发 送确认信息失败等等。
最后总括起来就是,用户来源渠道,UV,PV,停留时间,网页点击热图,一跳率,二跳率,访问路径,转化率,市场推广还应该关注你的CPM,CPC,以及用户转化成本等。
二 运营的维度
运营的维度就是用户到了网站上后续行为,这个方面上社区和电子商务都有自己要去关注的点。
对于电子商务网站来说,用户的维度的分析是分析用户来源,运营的维度那就分析收入情况了。第一个数据点是每日的订单数,这个是要看电商网站整体的销售 情况也是最重要的一个数据指标。第二个就是客单价了,每笔订单的金额,基本上订单数和客单价的乘积差不多就是电商网站的整体销量,与实际情况的差别不是很 大。 接下来就是要去看订单支付成功率,很多人都有这样的经历在电子商务网站上,我们可能会把很多商品放在了购物车上,但是最后肯那个会删掉购物车上某些商品, 或者说很多订单最后并没有被支付。电商的运营人员非常关注这个数据,如果说大量的未支付订单,就需要去分析问题是出现哪里。是注册环节出了问题,还是说支 付环节出问题导致用户支付失败。
第四个数据点在退货率,这个数据很重要,如果有大量的退货对于网站来说损失非常大,同时还要分析退货的原因是什么。
第五个就是订单交付周期,每个订单从用户支付成功到送达用户签收的时间,当然不同的区域,一线城市和二线城市的交付周期都有差别,但是这是考验了电商整体的物流水平。
还有一个不为人注意的数据点就是投诉率,电子商务的用户体验是一个从线上到线下的全过程,重在服务某一个环节出现差错都是致命。用户投诉,往往就是在 某个环节出现了问题,留给用户的印象非常之差。投诉率是电商整体服务水平的体验,建立一个品牌很难,但是毁掉一个品牌则是非常的容易。
对于电商来说,最后一个重点数据则在用户的重复购买率或者二次购买率,这个则是考验了用户的忠诚度。某个用户第一次购买体验非常好,对商品很满意,那么产生二次购买行为的概率就非常大。用户多次购买的时间周期也是一个需要关注的数据点。
对于社区来说,需要关注的运营数据跟电商就有很多差别。以优质内容分享社区为例,每天的新注册用户数,登录的老用户数,人均PV数是社区整体数据。再 下来,社区每天产生的内容有多少,具体到文字,图片,视频等各种不同类型的内容各是多少,上前日的增长率是多少,相对于上周或者上月的增长率又是多少。同 时,么天新增关注,新增评论,转发等等,这几个数据,都是整个社区互动氛围的整体表现。当然还要考虑流失情况,两周未登录,一月未登录,两月未登录各占到 社区总注册人数的比率,比率越高对于社区产品及运营人员来说是非常危险的,更要好好地去关注。
当然对于社区来说,优质活跃用户是营造社区氛围的关键。那么对于这些优质用户来说,是需要重点来关注的。通过数据来分析,达到优质标准的用户每周增长 多少,每个人本周发布的内容,各个类型的内容以及互动的数量,有多少人是处于濒临流失状态。这些数据都会帮助运营人员调整自己的策略,例如看到很多用户很 活跃,但是发布内容并不好,那么应该怎么去引导用户;还有用户濒临流失,那么就需要考虑用什么方法挽回这些用户。
三 商品及内容的维度
这个维度其实也应该放在运营的维度里面年,但是这一块确实很多人都会忽略掉的,所以把这个维度也单拎出来。
在电商中,出了关注网站整体的用户及销售数据,还要关注单一品类及单一商品的数据。某一品类的销量,平均每次购买量,金额,以及退换货率。对于单一商 品也是同样的数据分析,来看此商品在一定时期内的销量,订单数,金额,以及退换货率。通过这样的分析就能看到热门品类和热门商品的趋势,后续的运营,营销 或者促销的选择就很清晰了。
对于社区来说也是如此,我们要看社区整体的数据情况,但是社区中内容的重要性与人的重要性同等重要。对于优质内容分享的社区来说显得尤为重要。除了内 容的文字,图片,视频的不同类型,还有内容本身的分类。包括是摄影,旅行,美食,时尚,动漫,电影等不同标签的内容。在社区中内容的标签是用户自己添加 的。那么需要关注的第一个数据点就是用户自己添加的标签有多少是本周内新增的。这样就可以看到社区每周会要多少新鲜的内容产生。第二就是各个标签下用户的 发布内容量,每天是多少,每周是多少。最这样就看出哪些标签下的内容最活跃,后续相关的运营活动就可以从这里面找到方向。第三个数据点就是各个标签下用户 的互动数,包括评论、转发、收藏抑或喜欢等不同行为操作的数量,这个数据很清晰地显示了用户在不同标签内容中的活跃程度,这是社区氛围运营及活跃必不可少 的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29