
大数据时代,相关部门应该有共享思维
大数据活在“云端”,唯有云计算能让大数据找到自己的轨迹和存在的真正价值。但是,大数据并不全是飘在天上的浮云,它也需要能源源不断输送数据的“根”.
那么,大数据的“根”在哪里?
共享是大数据的“根”
大数据与云计算,或许就像一枚神奇的金币的正反面,让许多人感觉“云里雾里”、亦真亦幻,却又能真切地感受到金币的光芒。
什么是大数据?按照维基百科的定义,大数据是指无法在可承受时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。它的基本特点可以概括为海量的数据规模、快速的数据流动和动态的数据体系、多样的数据类型、巨大的数据价值。如果将单个或局部领域的数据及其挖掘处理视为小数据,那么关于某一主体的大数据就是由成千上万、相互关联、相互交织的小数据汇聚而成的。小数据的充分融合,就是大数据形成的根基。譬如一滴水,唯有与别的水滴融合在一起,才能形成水流,才能汇成江河、海洋,才能发挥水的价值。这种融合就是共享。没有小数据的共享,就没有大数据生长的“根”。
要从海量的数据中快速地分析、挖掘出有用的信息,单台计算机已难以胜任,必须采用分布式架构,依托云计算的分布式处理、分布式数据和云存储、虚拟化技术,即透过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经搜寻、计算、分析之后将处理结果回传给用户。这就是与大数据相依相存的云计算。显然,如果没有数据的共享,云计算也是“无米之炊”。
当然,数据能否共享,涉及到数据的开放性、法律边界、数据价值实现等问题,还面临诸多现实障碍。
谁阻碍了数据共享?
当我们沉醉于大数据的奇妙与魔法无边的时候,现实世界却给了我们一记响亮的耳光——大家沮丧地发现,许多政府公共信息仍处于零散、分割、封闭状态。
各级政府部门在履职过程中掌握了大量的数据信息,其中涉及企业或个人的数据最为丰富。目前普遍认为比较有用的企业信息大致包括四个方面,一是反映企业基本情况的,二是反映企业真实经营状况的,三是反映企业及企业主资信状况及守法情况的,四是反映企业融资、财产抵质押、对外担保等情况的。这些涉及企业的各种信息资源散落在不同的政府管理部门,总体处于彼此分割、孤立、封闭状态,没有实现数据之间的共享、连接和融合,更谈不上大数据价值的体现。
尽管近年来,各级政府都在积极搭建公共信用信息平台,推动社会征信体系建设,特别是在相关文件出台后,步伐进一步加快,各部门也大多建立了自身的信息管理系统,但部门之间信息不共享或共享不充分仍是常态。即使有一些全国性、地区性的统一信息平台,所含企业信息也非常有限,且不完整、不及时。
这种信息割裂的状态,不仅不利于大数据的发展,从眼前看,则对具体运用大数据的相关主体的发展形成阻碍。比如,银行业在服务实体经济特别是小微企业过程中,面临的突出瓶颈之一,就是信息瓶颈。银行业开展小微企业信贷业务面临的最大困惑是信息不对称。信息的不对称使银行在发放小微企业贷款时难免如履薄冰,顾忌甚多。因此,能否切实掌握和了解反映企业真实经营状况、企业及企业主资信状况等相关信息,在很大程度上决定了银行对小微企业放贷的意愿以及介入小微企业信贷领域的深度。
目前客观存在的企业信息共享“难”,根源在于部门利益。相关部门在参与公共信用信息平台建设时,出于种种原因,往往叫得响、做得少。一些部门出于商业利益,将自身所拥有的大量公共信息视为“私有财产”,以有偿作为提供信息的条件;或以维护商业秘密、涉及部门机密为由,不愿将拥有的、本属于公共资源的企业信息与其他部门共享,或者象征性地扔几根“骨头”,人为造成了企业信息的分割、残缺,也造就了许多“僵尸”信息平台;有些信息的共享按说不应存在障碍,只因为一些数据拥有的部门感觉“吃力不讨好”,缺乏主动提供数据的动力。
当然,也不排除个别地方政府从局部利益出发,对可能影响当地企业发展的行政处罚类负面、失信信息的公开加以阻扰,影响信息数据的共享。深层的原因,则是社会信用体系建设法制化步伐缓慢,公共信息征集机制不健全,对相关部门提供、公开相关政务信息缺乏有效的约束,以及信用信息使用在公开与保密之间的法律边界不清晰。
小数据不能共享,大数据必是空谈。所以,看大势、顾大局、破本位,推进小数据共享,是政府部门在大数据时代应有的思维。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23