
大数据临产业风口 如何解读数据资产商业价值
如今,大数据已不再停留于概念畅想阶段,对于大数据的认知与应用也越来越广泛深入,不管是政府还是企业都在加快行业建设与布局,资本市场的助推更是加速了这一进程。
本月初,IBM宣布收购大数据供应商Cleversafe以加强其大数据分析服务能力;10月14日,提供企业智能服务的大数据公司EverString获得B轮6500万美金融资,创下全球大数据商业智能领域最大的一起融资。全球范围内的资本加速入局,一时间让大数据商业应用领域的飓风再次强势来袭!
资本热潮背后的行业需求:大量企业数据资产的价值变现之路
透过资本对于大数据企业应用市场的关注,可以看到整个企业市场对于数据资产价值的强烈认同。相比几年前资本对大数据领域还只是懵懂和猜测,如今,大数据将作为企业发展驱动力的事实已真真切切摆在人们的面前。
然而,现在大数据行业整体很热,但实际分析可以发现:其应用领域更多集中于互联网、电商为主的线上企业,线下传统企业并没有多少受益。
按国家统计局数据,2014年中国社会消费品零售总额26.2万亿,以互联网电商企业为主的网上零售总额为2.8万亿,这说明,虽然线上销售发展迅速,但大部分的商业零售仍由线下传统企业来产生。 相关的传统大中型企业,才是未来大数据商业应用的主力战场和爆发点,围绕这些企业的深入数据研究与数据资产变现是大数据产业链最有价值的领域。
由于传统企业(尤其是领先的大中型企业)自身对行业有着深入的认知,因此当前大量基于简单统计分析的大数据产品,实际被证明并不能满足其业务深化的需要。这说明,在大数据源的基础上,首先要具备行业的深入理解能力,加上与大数据分析技术手段的结合,通过深入的洞察,才能帮助企业真正发现和应用大数据的价值,推动其数据资产的变现。
大数据下的全景消费者画像 提升企业的客户价值基础
当前,谈到大数据,很多企业都会谈到一个新概念--“人物画像”。实际上,人物画像作为消费者Profile建模内容,在研究行业已经从事多年。其本质是对消费者描述的一种量化形式,价值仍然取决于对消费者的洞察深度。
作为研究消费者几十年的资深用户专家, HCR COO刘晓葵分析指出,现在市面上以在线广告、电商、IT为主的用户画像,都是面向购物推荐、精准营销和DMP广告等目的,只关注购物与浏览兴趣这些与商品销售直接相关的浅层关联。从消费者认知的角度而言,这种方法并不全面,应用上也有很多局限。
消费者的消费行为本质取决于其生活特性、消费心理以及价值观,而这些都是当前的画像体系所无法探知的。比如,如果用户常购买健怡可乐和木糖醇,以现有的购物兴趣标签机制,通常会推荐类似类目/品牌和浏览选择的商品。而从消费者研究的思路,发现的是用户存在 无糖/糖尿病可能 这个生活特性。显然该特性未来可推荐的商品更广泛(任何无糖食品、血糖仪/试纸…),接受度也更高。
如今,许多ToC类的大中型企业,也已经认识到通过大数据生成全面深入的用户画像对未来提升其客户价值帮助很大。但他们苦于自己没有能力完成,而现有的外部服务(如前面分析的)画像不够全面,对企业业务理解也不足,导致画像结果的实际深入应用价值不大。
这样的现状说明: 一个好的标签画像体系,必须要有刻画全面的消费者Profile模型、深入的行业理解,强大的分析技术三者结合方可实现。长期消费者研究的背景优势,各行业的研究员对企业长期研究服务的深入认知,是建立全面深入的标签画像体系的必要条件。
一个全景、能够完整勾勒用户的标签体系,应该从人的整体出发,除了分析兴趣和基本属性外,还应该包括生活特性、家庭、心理学(价值观、消费观等深层影响消费行为),全面与深度兼顾,才能更加全方位准确的勾画出目标客户的全貌。
同时,在技术实现中,要将研究员的理论经验/规则抽象为专家知识库,再配合机器学习、自然语言理解与规则推演等大数据分析技术,从而能快速的自动化分析大规模(亿级以上)行为数据,生成个性化用户标签,为企业服务。
数据来源@HCR大数据平台
企业大数据商业应用的闭环模式
当前,许多传统企业已认识到大数据的价值,但他们发现在实际应用与数据资产变现之路上困难重重。 从价值提升角度而言,对于很多大中型企业来说,相比于外部数据,实际上其内部大数据的整合与挖潜会更有业务价值。
企业要想在此有所成功,必须改变原有思路,根据经营/客户生命期为中心(非传统的管理/业务流程特性)进行内部大数据整合重构,结合外部数据,构建统一的业务大数据分析平台。在重构的数据基础上,借助服务商(研究公司而非IT研发/集成企业)的用户画像技术和对企业业务特性的理解,对现有以及潜在客户进行适合企业业务的全方位深入的标签化分析。得到的用户标签将具有更全面的维度和深度,并被所有业务部门共享(而非现在的数据与结果各部门各自管理和利用)和直接应用于后续的各种业务活动,这才可能进一步提升客户的价值贡献。
企业在应用的基础上,通过对内部数据和应用效果反馈的持续整合与分析的迭代,可逐步构建起企业大数据价值应用的闭环生态链。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29