京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下商业趋势与科技创新
大量生动的案例和详实的数据分享了数字化时代的十个商业趋势,这包括从碎片化数据到大数据、从单边市场到平台双边市场、从PC互联到移动互联、从离线计算到云计算、从软件定义硬件到Software Define Entity、从小而全大而全到外包众包、从供应驱动消费到需求驱动消费、从规模经济到长尾市场、从传统金融到数字化与互联网金融、从纯线下到O2O模式。
这十大趋势应该如何理解?朱晓明院长在峰会中给出了答案。“从第一个趋势到第四个趋势大数据、云服务、平台化、移动互联网是数字化时代科技创新导致的基础设施的变化。第五个趋势就是预测,数字化年代软件将成为人类最强生产力之一的趋势。第六个趋势是揭示了服务业、研发等领域是可以用数字化手段来改变生产组织方式的。第七个趋势揭示了供应驱动消费与需求推动消费在互联网年代有可能是交替变化的,各显其能的趋势。第八个趋势是描述了创新型企业利用数字化手段。第九个趋势是互联网金融。第十个趋势是表明了LBS为基础的O2O模式,为众多企业商业模式的最佳模式。”
此外,朱晓明院长还提醒说,在大众创新的时代要谨防四种陷阱:一是过早采用新技术、二是过快放弃新技术、三是过晚地采用新技术、四是拖延太久采用新技术。
在谈到O2O的发展空间时,朱晓明院长表示“近六成的用户用过移动O2O,移动互联网的用户在中国有10.6个亿,可是移动O2O只有6.1个亿。中国的房地产占GDP的比重是百分之六,但O2O应用的比例只有百分之三点九,这就表明它的空间有很大。其中,在O2O环节里, LBS和电子支付非常重要。”
“企业要实现O2O的转型,应以定制化预约、设立导航服务、智能会员识别、LBS、大数据、广告精准推送和客户营销为目标。”
“在数字化年代数据可以挖掘,资源可以共享,因此信息可以对称,成本得以降低。降低了交易成本,商家才能在竞争的市场当中获得新生。”
在演讲的最后,朱院长预测说:“数字化大数据时代来临的时候O2O也许将是最具创新特色的商业趋势。而O2O商业世界的未来是产品不分高低、数可逢生,未来无数而不生;行业不分贵贱,网可助胜,未来无网而不胜;服务不分你我,云可众成,未来无云而不成;需求不分远近,移可求深,未来无移而不深。“
好屋中国介绍:
好屋中国是国内首家基于移动互联网的O2O房产全民众销平台,2012年创立于苏州现运营总部位于上海。
好屋中国成立三年时间,布局4大海外中心,48个中国一二线城市,为135个开发商提供服务,合作楼盘达562个,累积平台交易额已突破2942亿元。
2015年,好屋中国正式展开房地产全产业链战略布局,推出考拉社区——一款有情感、有温度、有智慧的社区懒人应用,搭建人与邻里,人与物业,人与商业之间的关系平台;抢钱宝——全民营销利器,用娱乐互动抢红包的方式实现社会化营销;抢客宝——客户案场直通车,客户信息快速直达置业顾问实现快速销售;助理宝——客户成交管理助手,实现从线上到线下无缝链接;全媒体——大数据时代的全网导客系统,实现线上全封锁、潜在客户精准全覆盖;客倍多——效果管理移动驾驶舱,让开发商随时随地了解效果和成交情况,使营销过程透明化,营销策略可控化;房拍惠——金融聚客产品,以金融众筹模式实现楼盘高效传播和短期快速聚客;数钱宝——一款会生钱的锁客神器,帮助开发商提前实现合法精准锁客蓄客的金融产品;好屋贷——房产首付金融产品,降低购房门槛,促进快速成交等11款全产业链新产品。建构了从售前信息整合,到售中服务体系,直至售后社区平台的全息、全系营销服务链,打造好屋“真”“金”电商平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29