
大数据时代下 涂料行业的大数据分析
随着大数据时代的来临,大数据分析也应运而生。大数据作为时下最火热的IT行业的词汇,其爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。
数据时代下涂料行业的大数据分析
然而,大数据时代是到来,那么大数据意味着什么,它到底会改变什么?如何从大数据中发掘出“真金白银”则是一个现实的挑战。仅仅从技术角度回答,已不足以解惑。如果来个必须,大数据只是宾语,那么离开了人这个主语,它再大也没有意义。所以我们需要把大数据放在人的背景中加以透视,理解它作为时代变革的力量。
作为通用的一种分析手段,我们不妨把这个主语化成“涂料行业”,分析大数据对涂料行业的影响,解读为何大数据分析能为涂料行业带来时代变革的力量。
大数据分析:信息爆炸时代产生的海量数据
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然现在企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
当社交网络还未流行,网购还没有那么火热的时候,互联网充其量只是一个内容传播的中介。然而,如今社交网络的兴盛和网购成为一种习惯后,互联网不再仅仅是一个中介和平台,正如facebook所言,还是一个“新世界”。在互联网空间,人们(或称网民)除了浏览或吸取自己所需信息外,人们在其中还形成一个单元,其一言一行都在透露着自己喜怒哀乐、生活习惯、工作心态、购物欲望等因素。然后,将互联网用户相关数据进行整合、分析,成就了如今的“大数据”。
这里,问题就出现了,让涂料行业人士困惑不已的是,大数据时代不是主要针对IT行业而言吗?它何时,又何地的跟涂料行业扯上关系的?其实,与其说“大数据”是一个数据库,不如说“大数据”是一个对当下社会人类行为趋向的分析和总结。大数据之于涂料企业,重要的是消费者的消费行为和消费习惯,他们很大程度上左右企业涂料产品的研发方向和营销策略,而往往涂企对消费者的了解恰好来自对消费者“大数据”的分析。“大数据”能为涂料企业提供的不再仅仅是冷冰冰的数据,还可以是数据背后预示的市场走向和消费趋势等信息。
数据时代下,涂料行业需要大数据分析
在这个“大数据”时代里,社会化媒体已经成为人们日常生活必需品。社会化媒体的发展,正带领涂料营销进入新的时代。
首先从向消费者传播信息到与消费者建立关系的时代。今天的涂料品牌如果仅仅依赖传统媒体和涂料经销商发出声音,而没有进入消费者的关系图谱中,很可能会被消费者遗忘;
其次,基于消费者自传播形成的大数据时代。在大数据的基础上分析、洞察和预测消费者的偏好,并据此为消费者提供最能满足他们需求的涂料产品、涂料信息和涂料服务,以及传递准确的广告信息给他们,是企业今天面临的最大挑战;
再来,从可预测可控制,进入一个实时交互与实时沟通的时代。消费者在社会化媒体上的表现是没有任何规律的,甚至消费者的网络化族群的聚集也是自发的,涂料企业企业如果不能对消费者的这些实时反应进行实时化互动营销,也很难满足消费者的需求,甚至该涂料品牌还可能面临很大的风险。
在社交网络兴盛之后,涂料企业对微博、QQ等社交工具的关注日益提升。正如苹果改变了智能手机行业的规则一样,社交工具也改变了人与人之间的联系。而涂料企业对自家涂料产品的宣传也开始多元化,逐渐渗透到互联网。特别是在微博、人人网等社交工具所操作的产品促销、宣传等活动,由于互动性强,参与者会在活动页面不知不觉地留下自己的相关信息,通过“大数据”可以分析出消费者的消费目标、消费行为、消费金额、消费预期等信息。然后,涂料企业再通过整合这些信息,充分了解消费者的相关信息,从而提高自家涂料产品与消费者的契合度。
时下“大数据时代”正在由概念逐渐走向实体化,走向业务化。通过数学、统计学和计算机编程等方式,“大数据”不但可以从相关信息来分析出涂料企业未来的走向,还可以为企业处理与消费者之间的关系提供重要的数据,例如消费者的消费预期目标、消费行为、消费习惯等。相信在未来,伴随互联网时代的不断发展以及涂料行业不断前进的步伐,在机遇与挑战并存的道路上,大数据的运用和掌控是涂料企业达到理想发展效果的重要手段。
涂料大数据应用案例
数据时代下涂料行业的大数据分析
之一:油水之争
近两年,涂料行业讨论最激烈的问题就是水性漆将代替油性漆的时代已经到来了。涂料行业发展到今天已经算得上是成熟的行业,传统的油性涂料和现代创新性的水性涂料,究竟谁的优势强,亦或者有界别于两者的一种特殊涂料的存在,符合人们的时代发展需求。大数据分析的优势是可以通过收集起来的数据,预测未来涂料行业发展的大趋势,通过这些预测,涂料企业便可以进行有效的改革创新。
之二:电商领域的涂料企业
越来越多的涂料企业开始涉足大数据平台,利用大数据精准的分析能力,和海量的信息库,对市场的需求方向进行整体把握。对于涉足电商领域的涂料企业而言,大数据存在的意义是,它能通过网络平台反映的顾客“大数据”信息,使互联网企业可以更加准确地对用户进行行为分析、需求挖掘。通过大数据提供分析,涂料企业便会对关注度高的产品进一步加大推广投入。借鉴服装行业"打爆款"的策略思路,将一个单品做出一个成规模的量级,这对于企业来说将是极大的利好。
之三:涂料企业的品牌宣传
作为社会上一个不较为人所了解的领域,涂料行业一直都是在“摸着国外的石头过河”,其中,国外的石头就是指立邦、多乐士、威士伯等国际著名涂料品牌。在中国,由于相关媒体或机构对涂料行业的关注度一直都不高,所有,涂料行业很多数据价值一直都被人们所忽视,消失在历史的轮转中。过去,涂料企业对数据的认知也局限于一些宏观数据,例如年产量、年增长率、月产量等宏观信息,对消费者的认知一般只是通过线下调查问卷的方式来摄取。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18