京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可或为一场骗局
几乎每天都能看到有人在谈论大数据,让人好生厌烦。什么是大数据(Big Data)?简单一点可以理解为超出传统数据管理工具处理能力的大规模、复杂的数据集合。判断是否数据大数据的范畴,要从三个维度来衡量:数据量(Volume)、处理速度(Velocity)以及数据种类(Variety)。
大数据(Big Data)是 2012 年信息技术领域最时髦的词汇。当然,跟所有曾经的时髦技术热词一样,最后可能是一场骗局。为什么?
大数据是个相对的概念,新瓶装旧酒
有些人所说的大数据处理方式,不过是在既有的方案上包装了一下,新瓶装旧酒,只为赶时髦。今天的大数据可能到了明天算不上大数据。过去我们也曾经对「海量数据」望而生畏。但海量数据时代并没有给多少企业带来革命性的变化,在 MapReduce 以及 Hadoop 出现之前,没有多少企业能够轻松的对数据进行大规模并行计算(奇怪的是,那时候没有多少人提大数据)。而 NoSQL 的出现也为处理数据的方式带来了更多可能性。我们突然发现,处理数据能力已经悄然增强。
大数据是机会,但不是所有人的机会
大数据的商业前景被过分夸大了。到目前来看,只有为数不多的企业真正拥有大数据,而且这些数据的管理、处理、分析并没有带来所谓空前大的挑战。因为新的工具、新的计算方式已经已经具备处理这些数据的能力。
大数据是机会,但只是少数人的机会,更多是巨头们的商业障眼法,比如 IBM 、Oracle、微软,他们提倡甚至夸大大数据的目的还是为了向你兜售他们的工具,兜售他们的解决方案,确切的说,从你身上赚钱。更有甚者,居然是向你兜售硬件,这不完全是扯淡么?大硬件还差不多。
中小型公司应该绕道走,别唯大佬们马首是瞻,别总去凑热闹。你所需要的东西,通过开源社区就可以获取到,参加各种大佬们口沫横飞的会议还不如和工程师聊聊可以运用什么工具来具体操练一下。「适用」好比什么都重要。创业公司也应该绕着“大数据”走,这未必是个好方向。
大数据的确会有价值,但没有那么大
必须要承认从某些大数据中会挖掘出新的价值,但这个价值只是附加价值,没有理由去夸大他,更没有理由去无端的想象。你可以说这篇沙漠可能有金子,但并不是说沙漠中一定就能挖掘出金子。
从现在业界一些公司拿出来的所谓的大数据应用实例来看,依然只是在利用传统意义上的数据价值,只是巧妙地把这笔帐记在了大数据上而已。一个电子商务网站说「什么地方的人买东西最疯狂」或是「什么型号手机最好卖」,这会是大数据分析的结果,完全是扯淡嘛。难道数据仓库系统分析出来的结果和这个大数据出来的结果会有不同么?
不算结束的结束语
大数据不会是什么“商业模式的变革”,重视大数据,但没必要抱着大数据的大腿,尤其是在业界对于“数据”还不够重视的时候,就更别说大数据了。相信随着时间的推移,大数据这个词会和信息爆炸、网格计算、云计算等逐渐被淡忘,当然,到时候可能出现新的时髦词汇了。
没有大数据,只有数据;没有蓝海,只有大海;没有先知,只有忽悠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12