
大数据时代如何加强统计档案信息化管理
大数据是用来描述和定义信息爆炸时代产生的海量数据,统计部门需要积极应对大数据带来的环境变化和需求变化,更好地开展统计档案利用工作,更大程度地发掘档案的潜在价值,更加全面地提供档案信息服务,从而实现统计档案信息化管理的跨越式发展。
走进大数据
随着经济社会的快速发展,特别是近几年经济结构和社会布局不断发生变化,统计档案资料急剧增加,同时,社会各界对统计档案的需求也大幅增加。巨量资料、大需求推动着统计档案的收集、整理和利用进入大数据时代。统计部门每年都要接待大批查阅统计档案人员,每年都要调阅数以万计的各类案卷。如何从繁杂的个性化需求和数量庞大的案卷中认识和利用规律,如何在大量提供的数据中确保企业、调查对象隐私安全?这需要统计数据的利用情况,这个过程,我们可以视为一个通过“加工”实现数据“增值”的过程。但是,统计部门如何提高对数据的“加工能力”?必须首先搞清楚大数据给统计档案工作带来的变化,根据变化寻找应变办法,提升统计分析能力。
“三大”趋势
目前,统计档案的利用取得了较好的社会效益和经济效益。但在利用种类上,多数仍局限于“实际利用”,即有特定实用目的的一般性查询利用上,只有人次数、查阅卷次数等数据,缺乏综合分析、研究预测等数据加工过程,更缺乏利用偏好规律、利用趋向等加工结果。简单的数据对于一般利用者来说意义不大,对经济发展、规划、预测和调控来说更是无关痛痒。然而,随着大数据时代到来,统计档案管理将逐步呈现“三大”趋势,也将给现有的统计档案利用带来相应的挑战。
一是大档案。载体形式更加广泛,一切与经济社会有关的、经过统计部门调查取得的文书、数据、声像、实物都被作为统计档案。数字化档案体量更加巨大,原有的纸介质统计资料,以及一切非数字化的统计档案都将通过信息技术不断地加工成电子档案。
二是大服务。大数据时代统计档案服务将朝着社会化、多元化、开放性和先进性方向发展,档案服务以利用者的个性化需求为导向,提供网络化、智慧型的服务。
三是大开发。在传统管理方式下,档案利用只是提供被动的查阅服务。在大数据时代,档案利用将延伸到使用大数据技术对档案进行大量加工和二次开发,更加注重分析、发现与预测,为利用者创造更多价值。
积极应变
面对大数据给现有统计档案利用工作带来的挑战,统计部门应积极应对,全面提升数据加工能力。
做好利用统计项目调整。一是将利用统计的关注点从数量转向效益。建议在统计档案利用项中增加利用效益项目,强调社会效益的统计,如增加利用者满意度或者利用效果项目,将利用者的需求满足状况以顺序数据的形式列入统计项,以反映利用者对档案价值的认知与认可度。二是完善数字档案利用情况统计,根据数字档案资源利用的特殊性,设置数字档案和电子文件的检索量、阅读量和下载量等统计项目。
做好利用统计工作的信息化建设。大数据时代,传统的手工登记、电脑汇总的工作模式正在失去其原有的意义。必须加快利用者自助服务终端设备、服务质量评价设备、统计软件的应用,以及信息系统的建设。利用者在自助服务终端设备上验证身份后,其利用记录及其在获取服务之后对服务质量做出的评价,都将实时传输到信息系统中自动存储。
做好专业人员配备。大数据将使利用统计工作大量化、复杂化和专业化,要求工作人员必须具备一定统计理论和实务素养。因此,要及时对相关工作人员进行专业培训,同时要把统计工作具体实践中的经验、技巧、成果等在工作人员中进行交流,便于工作人员相互借鉴、相互促进。
做好利用情况的统计分析方法运用。利用情况统计分析,是档案利用统计的最后一个阶段,在这个阶段中,通过运用各种专业的统计分析方法,使我们能够对利用情况进行清晰明确的全面认识,并依据统计分析正确估计形势,为决策提供依据。例如,对于历年的利用人次和卷次数,我们可以运用时间序列的描述性分析,通过计算数量的增长率、平均增长率来简单描述现象在不同时间的变化状况,也可以通过制作图形先观察数据随时间的变化模式及变化趋势,为进一步的预测提供基本依据。进行预测时,我们首先要判别历史数据模型是平稳序列、线性趋势,还是非线性趋势,然后结合数据多少选择用移动平均、一元线性回归,还是指数模型的预测方法。
做好利用统计成果的运用和宣传。通过统计分析,我们可能会发现统计档案利用的某些规律,如利用者的喜爱,也许还能够合理预测趋向。统计部门应该积极主动地将这些统计成果运用到服务工作中去,及时调整服务重点或者提前做好服务计划,甚至做出明确的统计预测预警。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26