
零售大数据营销:重点关注过程性数据
什么是大数据营销?大数据营销是基于多平台的大量数据,依托大数据技术的基础上,主要应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,但却可以作用于互联网行业和非互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。
大数据时代:大数据营销是大势所趋
以往企业做营销宣传基本是一对多的模式,即选定一个大的平台,在这上面做营销推广,利用平台优势去影响更多的用户。这样的广告效果在早先还是比较有效,但是随着用户接受内容的渠道和生活习惯行为的变化,这样的粗放式营销手段已经对用户产生不了推动性效果。这时企业需要在有限的时间内,利用精准的营销内容来吸引目标消费者。
企业在以往会通过不同渠道收集到大量的用户数据,之前这样零散、独立的数据似乎对于企业作用并不大,但是现在大数据技术分析能力的加强,让企业可以通过这些数据对用户特征进行挖掘和分析。
在数据分析的基础上会得到用户的个性,帮助企业精准的定位受众目标用户,并针对每个个体消费者匹配个性化的推广营销内容,让营销内容更加有针对性,可以满足用户的需求,而不是和用户本身需求无关的内容,大大减少了用户的被骚扰感,正是因为这样越来越多的企业开始做大数据营销。但一些企业在这中间发现自己做的大数据营销似乎并不是很准确和有效,那么什么导致这样的结果呢?
过分追求结果性数据让企业忽略了重点
营销过程中数据分为结果性数据和过程性数据,而现在多数企业在做大数据营销的时候往往关注的是结果性数据,把结果性数据作为主导参考标准,导致很多企业在营销过程中大量的过程性数据被忽视,其实这样的过程数据对于营销依然十分重要。
那么,什么是过程性数据?什么是结果性数据?举个例子:假如你是卖手机的企业,你关心今年有多少人买了你的手机,这个就是结果数据,这个数据是你比较关心的。而这一年中买你手机的人都是什么样的,包括年龄阶段、职位等以及他们在买你手机时比较关注的点是什么;这里面有多少是你的新用户,有多少是你的老用户;是什么原因能够吸引来新的客户等等,这些都是过程性数据。
在大数据营销过程中,如若你只关注结果性的数据,而不关注对过程性数据的分析和利用,这就好比是你卖了手机,但你不知道你卖给了谁,就不会对你的产品定位有一个准确的把握,也不会对产品研发起任何的指导性意见,整个营销活动变的毫无意义,只是为了卖货而卖货的企业营销,对企业的长远稳定发展不会有任何推动指导作用。反过来,如果在营销活动中能把这些过程性的数据考虑进去,并进行记录,相信会让你的营销活动的转化率和投资回报率都会得到巨大的提升。
随着大数据挖掘和分析技术的发展和成熟,现在已经可以利用技术手段去追踪分析过程数据,并且不断进行优化,从而助力企业更好的开展营销活动,提升营销效率。例如信柏科技在做的线下实时场景化营销,就是基于大数据的挖掘和分析结果,根据消费者所处的环境以及其消费偏好,对其进行实时化的个性化营销信息推送,大大提升了营销效率。
因此,大数据背后蕴藏了我们所不可估量的价值,对于企业而言,大数据能够让其发现营销机遇,如潜在客户、新市场规律、回避经营风险等,根据用户的精准画像还可以及时调整营销策略和手段。但前提是,企业在运用大数据营销过程中一定不能一味的只追求结果性数据,只有充分利用好了过程性数据,才能收获令人满意的结果性数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04