
大数据的定制化产品与服务_数据分析师
一个大数据案例,讲的是美国旧金山有一家电子商务公司True&Co,他们采用数据分析的技术,为他们的客户寻找合适的bra。这个案例的之前36大数据之前曾报道过。基于这个案例在实际生活中的应用,我想提出自己的观点,人体本身就是一个“活”的大数据,而大数据未来可以拓展到我们未来生活的方方面面,让我们生活更加智能和便利。
此前,我曾经提出过一个观点,“每个人的背后,都是一组鲜活的数据”,没错,每个人对应的是无数的数据,这些数据有健康方面的数据,包括身高,体重,三围,血型,星座和身体各项指标数据等;有消费方面的数据,比如浏览网页、玩iPhone游戏、微博、微信等数据;还有个人信息的数据,比如姓名、职业、学历、阅历、电话、电子邮件等等。还有一些没有捕捉或者记录的数据,例如梦境、理想、一瞬间的想法、信仰等等。而这些数据,组合成了一个完整的人,并且这些数据都是随时会有变化的,属于流动型的数据。所以,我们可不可以理解为,一个人,本身就是一个大数据。
因为有这些数据,我们可以畅想一下大数据如何应用到生活中。
抛出我的另外观点,大数据另一个商业化路线——定制化产品和服务。
因为是在洗澡想到的事情,自然就想到了自己遇到的一些困难。前面我说到,每个人都是一个活体大数据,因为每个人的数据不一样,所以在一些适合自己的产品选择上也是不一样的。比如说,洗发水的选择。
要选择适合自己的一款洗发水非常困难,因为身体因素不一样。比如冬天,头发干枯毛躁的现象很常见,而夏天因为出汗、头皮油脂分泌过多,就需要选择清爽型、去屑的洗发水。而我们在购买洗发水的时候,换来换去总是那么几种,只是牌子不同罢了,所以我家里也囤积着大量用不上的洗发水。
如果有一家公司能够准确的猜出我想要的产品,或者根据我自己头发不同时期的状况,给我定制出不同的洗发水会不会更好呢?一方面可以节省我左挑右选的时间,一方面也可以帮我节约买错商品的钱呢?这里就需要用到大数据分析。大数据分析里面不仅包括我身体的各项数据,还有天气、地域不同的数据,还有我喜好,生活习惯等等。这个大数据模型最好能够精确的预测出不同时期我不同的喜好,对洗发水味道的选择,以及我是否想要修复头发、顺滑头发等附加功能,根据大数据分析结果,从而调制出我想要,并且适合我的洗发水,而洗发水的香味与我们近期使用的香水味道又不相冲突呢?
再回来说女性内衣个性化定制的情况。挑内衣真是件很困难的事,颜色、布料一直是内衣厂商非常下功夫的地方,但实际上,即使试穿过的内衣,也不一定适合你自己。原因很简单,内衣要搭配不同的衣服和裙子来穿,而且颜色和肩带的选择也很重要。再者就是舒适度。
用大数据来定制女性内衣,那么背后的大数据里面,除了尺寸、颜色、三围数据之外,是不用应该把我要出入的场合、要搭配的衣服、不同季节、生活习惯等等考虑进去呢?假如这个女性身体是多汗型,那么是不是在内衣的布料的选择上要选择更加吸汗的布料呢?如果我还很喜欢穿吊带裙,那么是不是要考虑用窄的肩带的呢?而且年龄不同,对内衣的需求也不一样。而这些因素,目前的内衣厂商并没有考虑进去。
学生想去的景点与办公族想去的景点不同,老年人想去的景点又与中年人想去的景点不同,背包客与驴友想去的景点更不一样,学美术和学建筑的更不一样。如何做到大家都满意?用大数据来定制旅游吧。
不仅是年龄,身份和生活习惯,每个人的情感和经历也都不一样。比方说,我们的叔叔阿姨们都看过电影《罗马假日》,他们去罗马肯定是要去许愿池的,但我不一样,我是80后,我没看过这部电影,但是我喜欢歌剧,去罗马我更想去罗马歌剧院听一场歌剧。而旅行团往往选择的景点都是只要著名的都去,或挑选一些大家都去的地方,而不是根据每个人的兴趣去选择。这个时候,定制化的旅游产品就变得很重要。而人们往往又不知道自己到底想要什么,想要去哪里……不妨用大数据预测一下吧。
说到酒店,不记得在哪部电影里看过这么一个桥段,国外有一家企业的BOSS去另外的城市出差,在一家五星级酒店下榻,刚刚办理完入住回到房间,侍者就送来了一瓶昂贵的葡萄酒,而这款葡萄酒不说酒店常用的,非常难买,是酒店为了客人专门从另外一个城市空运过来的。
侍者送上葡萄酒后,这个大BOSS非常的感动。因为他有每天下班回家喝一点葡萄酒的习惯,而葡萄酒的品牌和规格正是他每天喝的那种,他觉得自己又回到了家里,很贴心。
其实这也是一个定制化服务的例子,酒店通过了解客人的喜好、生活习惯、年龄、职业、身体状况、收入等大数据,从而针对他本人专门定制了服务。
利用大数据来做定制化服务和产品,可以用到生活中的方方面面。未来,我们去逛大商场,也许根本不用穿着高跟鞋逛得累个半死,自从进入商场起,我的iPhone就会收到商场为我个人定制的服务计划。我喜欢的牌子新衣服到货了,根据我的收入,我也买的起,只要去试一下拿货就行了。我有3个小时的时间,除了买衣服,这个定制化服务里还会根据我的时间安排出我今天的行程。根据我近期的大数据(比如说减肥计划、喜欢的电影类型等等),推荐我去素食餐厅,去看一场科幻电影等等,把我的3个小时安排的丰富多彩并且有条不紊,是不是很开心呢?
结尾:
人人都在说大数据,但是又不知道大数据到底要怎么玩?定制化产品和服务是个不错的选择,滕百万不妨试试。事实上,大数据的体量是很大,但是真正的落地点是小数据和接地气,让生活更加便利和智能。如果你有大数据,却不知道如何用,不妨多出门走一走,你会发现在定制化服务方面的落地点很多。
试想一下,你一个川妹子,如果能在法国香榭丽舍的酒店里吃到酒店提前为你准备好的四川火锅,你的感受如何?本文来自:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14