
大数据挖掘才有价值_数据分析师
2012年开始,大数据就从一个概念变成了一个词语,并随着时间的流逝变得更加引人注目,到了2014年,大数据显然已经是IT圈里万人瞩目的明星。
著名研究机构IDC总结的4个V能很好地界定大数据概念,4V分别是容量、类型、速度和价值(volume、variety、velocity和value)。大数据是通过高速捕捉、发现和分析,从大容量数据中获取价值的一种新的技术架构。
各行各业中对数据挖掘与分析的需求一直存在,大家都希望从海量数据中寻找业务方向和新商机。不同的是随着信息技术的发展,特别是智能手机普及以后,用户参与各类业务所产生的数据总量变多了,能够分析处理挖掘的数据的种类也变多了,相当部分的数据分析报告的时效性要求更高了。
大数据平台并不意味对原有信息系统基础架构的否定,因为信息系统中现有的生产系统始终存在,客户对关键业务的可靠性和纵向扩展能力的要求不会减少,客户对数据的集中管理的可靠性要求始终存在。大数据平台重新为基础架构添加了更好的计算、更强的存储、更多的数据存储层次,而且所有的大数据应用都需要坚实可靠、灵活高效的大数据平台。
数据本身就是数据,价值是隐藏在数据中的,需要挖据、整理、分析才能形成有价值的大数据。从这点来讲,并不是比谁的数据库大,谁就是大数据。如果不去应用分析数据,那么这些数据只能用来归档存储而已,形不成价值。如何有效、快速、准确地分析并整理数据,是大数据应用的难点,数据需要经过归类整理、通过优化建模分析,有价值的部分才会浮出数据库。
例如2014年春节期间,腾讯公司根据QQ用户登录地点变化的数据,统计分析出春节期间人们迁徙地点的变化。同样百度也基于手机用户在春节期间登录地点的变化,给出了某一时间段人群迁移路线图服务这类基于大量数据统计出的结论,不但能作为一种新闻来传播,更可以为春运期间的铁路、公路、民航等交通领域资源调配做建议和参考。在大数据价值分析愈加成熟的背景下,大数据已经可以帮助政府进行更加科学的管理。对企业而言,大数据可以帮助其进行更加精准的营销和传播。比如微博和淘宝的合作,可以依照用户查询历史来进行广告商品的精准推送。
对于大数据而言,Google和Facebook是最早实施并发掘的公司,他们在大数据的分析和发掘上也远远走在前面。例如Google在全球有数十万台服务器,它背后就是一个全球最大的数据库系统,对这些数据的分析挖掘让Google发现了新的世界。
其实大数据技术目前依然以开源为主,直到今天也没有谁家形成绝对的技术垄断。即便是IBM、Oracle、SAP、EMC等行业巨头,也同样是将开源的大数据技术与自身原来的产品更好的结合起来,形成具有其产品特色的大数据平台而已。
虽然商业化的大数据平台基本都集中在国际巨头手中,但并不意味着中国的大数据就落后于时代了。国内最典型的大数据应用当属BAT百度、阿里、腾讯。作为占据国内80%以上网民搜索的百度,推出的百度指数、框计算等功能,无一例外的都是大数据典型应用;阿里旗下的淘宝在去年双十一中引爆了网民的购物狂潮,让随后一个月的时间里,各家快递都还为双十一忙碌,海量的成交数据和各地购物特点的数据分析也让阿里在大数据上占据了电商领域的重要地位;腾讯携旗下的老牌QQ+当红微信,形成了超过10亿活跃用户的大数据基础,由这些海量用户的行为积累的数据分析,也形成了腾讯的巨大财富基础。
新浪微博和360作为新兴的大数据企业也具有了自己独特的发展特色。新浪微博在更名微博后,显然已经占据了社交媒体的第一把交椅,作为各类新闻、消息的第一发源地,已经成为几乎所有机构、公司、媒体和社交的重要场所,它显然也是大数据的重要用户。360在国内的PC和手机的安全入口占有绝对优势,自然也是这些用户行为数据的获益者,因此360也当之无愧地成为国内大数据应用的典型企业。
这些巨无霸型的互联网企业已经将大数据玩弄得炉火纯青,那么是否意味着国内大数据产业已经成熟了吗?非也,这些巨无霸远远领先了中国其他行业在信息化建设中的步伐,其自身的大数据应用也都是基于开源系统,由自身强有力的技术团队进行符合自己业务需求的开发,逐步形成了有企业特色的大数据应用。
与这些互联网巨头相比,行业用户显然不具备他们那样雄厚的技术开发实力,显然不具备将开源大数据系统与自身业务对接的实力。但他们之前就是IBM、Oracle、SAP、EMC等产品的用户,他们可以直接从这些知名厂商获得能和已有业务数据对接的大数据应用平台。当然,这些具体的大数据部署同样要依靠SI等渠道的帮助,所不同的是,目前在国内能够实施大数据平台部署的多数是国际厂商。
其实今天很多行业用户依然把大数据定位在100TB级别以内,同互联网企业无上限的大数据相比,100TB内存是行业实时分析数据量的上限。SAP的HANA和Oracle的Exadata软硬件一体化大数据产品正好覆盖了这些行业应用领域,这些一体化大数据分析产品也加速了大数据实时分析的可能。与传统放在磁盘阵列中的数据库不同,这些新一代的产品将以往存放在磁盘阵列中的数据压缩后调入内存实时检索,或将数据放在内存和闪存中分层调用,避免I/O读取带来的迟滞。以往用户在查询磁盘阵列中TB级别的数据时,要等待数分钟甚至更多的时间,无法满足海量用户并发查询的需求,而运行在内存中的数据库产品成功解决了用户实时查询的难题。
从上图可以看到,数据在快速增长,但是用户可容忍的系统延时增长确实有限,因此大数据的处理和响应比是一个重要的指标。从早期GB级的数据库到今天TB级,甚至数百TB级别的数据库,数据增长的速度早已超越了硬件的摩尔定律。既然数据正在经历爆炸式的增长,那么就需要用更新的数据库技术才能将海量数据归类整理,并提取需要的资源。这对大数据分析的厂商提出了新要求。
中国企业目前缺少大数据实施能力和相关人才,而且大数据分析也不再是单纯的软件或硬件厂商的事情,传统数据库厂商充分利用了最新的服务器技术,像Oracle和SAP已经推出了一体机产品(大数据软件+定制优化的服务器+存储),而硬件服务器/存储厂商也推出了经过充分搭配的大数据一体机,这些一体机产品将是未来大数据市场的一个发展趋势,也是中国企业走向大数据的一个捷径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13