京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上篇介绍了SAS数据管理功能上,本篇介绍数据管理功能下,本篇主要内容包括如何利用set和output语句拆分数据集,数据集如何合并?以及如何使用SQL提取数据。
有时我们需要根据某一分类原则把数据行分别存放到不同的数据集。比如,我们希望把数据集a中的所有男生的观测放到数据集am中,把所有女生的观测放到af中,可以使用如下程序:
data am af;
set a;
select(sex);
when ('男') output am;
when('女') output af;
otherwise put sex='有错';
end;
drop sex; /*去掉sex这一列*/
run;
proc print data=am;run;
proc print data=af;run;
OUTPUT语句是一个可执行语句,它使得当前观测被写到语句指定的数据集中。这样,我们根据SELECT的结果把不同性别分别放到了两个不同数据集中。
OUTPUT语句还可以用来强行写入数据集而不必象我们在数据步流程图中说明的那样等到数据步最后一个语句完成。数据步中有了OUTPUT语句后数据步流程中不再有自动写入观测的操作,而只能由OUTPUT语句指定输出。不指定数据集名的OUTPUT语句输出到第一个结果数据集。比如下面的程序生成一个包含1到10的及其平方的有10个观测的数据集:
data sq;
do i=1 to 10;
j=i*i;
output;
end;
run;
proc print;run;
如果删去上面的OUTPUT语句则结果数据集中只有i=11,j=100的一个观测。
几个结构相同的数据集可以上下地连接到一起。
data classes;
set class1 class2 class3;
run;
有时我们需要在合并数据集时加入一个变量来指示每一个观测原来来自哪一个小数据集,这可以在SET语句的每一个数据集名后面加一个括号里面写上IN=变量名,变量名所给的变量取1表示观测来自此数据集,取0表示观测非来自此数据集。例如,我们把a数据集按男、女拆分成了am和af两个数据集并抛弃了性别变量,就可以用如下程序连接两个数据集并恢复性别信息:
data new;
set am(in=male) af(in=female);
if male=1 then sex='男';
if female=1 then sex='女';
run;
data new;
merge ssa ssb ssc;
run;
若数据集的观测顺序不一样,一般应该采用按关键字合并的办法,排序过程如下:
proc sort data=ssa;
by name;
run;
proc sort data=ssb;
by name;
run;
proc sort data=ssc;
by name;
run;
如果我们发现数据集中的某些数据值有错误或者现在的值已经改变了,我们可以从更正了的原始数据重新生成数据集,或者使用更有效的方法,即建立一个只包含新数据值的数据集,用此数据集修改原数据集。使用如下的DATA步中可以实现数据集的更新:
DATA 新数据集名;
UPDATE 原数据集 更新用数据集;
BY关键变量;
RUN;
例如,数据集C9501中王思明的语文成绩实际应该是91分,张红艺性别应为男,可以先生成如下的只包含更正数据值的数据集,不需要改的观测不列入,不需要改的变量不列入或取缺失值:
data upd;
input name $ sex $ math;
cards;
张红艺 男 .
王思明 . 91
;
run;
然后,把原数据集C9501和更新用数据集UPD均按姓名排序:
proc sort data=c9501;
by name;run;
proc sort data=upd;
by name;run;
最后用UPDATE和BY更新得到新数据集NEW,
data new;
update c9501 upd;
by name;
run;
用PROC SQL作查询的最简单的用法如下
PROC SQL;
SELECT 第一项,第二项,…,第n项
FROM数据集
WHERE 观测选择条件;
RUN;
其使用方法与SQL语言基本一致
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01