
百度“工业革命”思维:大数据再造互联网--互联网
未来的产业机会在哪里?互联网大佬们“英雄所见不尽相同”。
腾讯创始人马化腾就用“互联网+”来概括互联网行业的未来机会,即互联将向更多的传统行业渗透,并使传统行业脱胎换骨;百度创始人李彦宏则认为互联网未来有一个趋势,除了马化腾论及的“互联网+”之外,另一个趋势是互联网本身也在被技术改变,此前一波是移动技术,未来主要是云计算与大数据。
“互联网+”是已经发生的事情。李彦宏说:“接下来发生的事是技术改变互联网。”
4月24日,百度第四届技术开放日在北京举行,会议的主题是“大数据引擎驱动未来”。百度在当日宣布发布大数据引擎,并将这一大数据引擎向外界开放,为其提供大数据存储、分析及挖掘的技术能力。这是全球首个开放大数据引擎。
百度大数据引擎的意义是什么?至少包括两个方面的意思:一是利用新技术,特别是移动、云计算、大数据技术改造互联网;二是打造一个开放平台,把“互联网+”的思想引入更多行业。
数据开放平台
百度大数据引擎包含三层开放平台,分别是开放云、数据工厂、百度大脑。
百度开放云解决的是数据存储和计算瓶颈,这是由百度低能耗数据中心和分布式运算架构等技术来解决;在数据工厂平台,百度提供了“大数据挖掘机”把数据关联起来,并从中挖掘出它的价值;百度大脑建立在百度深度学习和大规模机器学习基础之上,现在已经可以模拟两、三岁婴儿的智力水平。
随着移动设备的普及,现在的人们已经随时随地都在产生数据,无论是某个PC网站上购物,搜索某条新闻,或是在手机玩某一个游戏,这些行为都会留下数据。
这种趋势还会继续。未来产生的数据,除了电脑、手机外,还有移动传感器、可穿戴设备、智能电视、车载电子设备,也包括了手机定位器、手机照相机等。这些设备会产生更加丰富的数据,使未来成为一个“大数据”时代。
在设备方面,百度开始进行尝试投资,包括智能手环、智能手机等产品。这些硬件产品多与第三方公司合作,百度出技术、出钱,甚至出人。百度的目的就是把百度的技术,包括搜索、地图等植入到这些硬件产品中,获得更多数据。
李彦宏把这一策略称为“baidu inside”,类似PC时代的“wintel inside”,不同的是,“baidu inside”是免费的,目的在于数据,“wintel inside”很昂贵,在PC时代,微软与英特尔攫取整个产业大部分利润。
百度高级副总裁王劲说,现在这个时代是一个数据大爆炸的年代,每个人,每个机构都要适应这一变化。
百度大数据引擎已经推出了一些十分好玩的服务:今年春节期间,百度和央视一起做了“百度迁徙活动”,利用基于百度地图LBS开放平台,根据每天多达70亿次的定位信息,在地图上直观显示春运期间人们怎样运动。
另外例子是百度大脑与语音识别技术相结合的应用:可以把海量的婴儿声音上传到大数据中心提取特征,年轻父母可以录下婴儿哭声上网比对,就知道孩子因为什么哭,是饿了,还是想撒撒娇,让没有带孩子经验的父母得到帮助。
百度工业革命
上述好玩的应用只是百度自己在百度大数据引擎上开发出来的应用;百度未来要把百度大数据引擎开放给更多行业的更多企业,让他们插上互联网的翅膀。
王劲举了一个医疗行业的例子,现在已经有很多可穿戴设备能够24小时每天监控健康状况,记录血压、心跳、睡眠状况、运动状况,检测汗液、血液,分析用户的身体情况,并且24小时不间断地把检测数据上传到大数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18