
电信企业如何用活大数据
当前,大数据浪潮风起云涌,各行各业都在探讨大数据的用途。对于电信企业来说,有潜在价值的大数据包括哪些?如何才能用活大数据?
笔者认为,除了主要来自于业务运营支撑系统、企业管理系统的传统数据外,电信企业拥有的大数据主要来源于互联网、移动互联网等,以非结构化为主,构成更全面数据源,如上网行为数据、网上交易数据、位置数据、网管数据、信令数据、微博数据、即时通信数据、网页、传感器数据、音频数据、视频文件、图片、日志、实时监控视频等。
大数据给运营商核心价值将带来很大提升。第一,大数据将助运营商提升市场响应能力,推进实现智慧运营。大数据让运营商能够全面洞察客户行为,精确化地识别客户,精准地制订策略,支持经营决策,增强电信核心竞争力。第二,大数据将助运营商提升客户服务创新能力,成为创新信息服务的参与者。数据产品化,将使运营商能够提供基于客户状态、位置、终端等个性化需求的信息服务。第三,笔者认为,大数据将使运营商提升资源优化配置能力,成为智能管道的主导者。大数据可让运营商精确识别客户、业务、SP,优化网络资源调度,分档分阶按需供给网络资源,实行差异化服务。第四,大数据将帮助运营商提升对产业链的服务能力,助力其成为综合平台的提供者。数据能力合理开放,将促进产业应用,提升全产业链综合服务能力。
对内应用增强竞争力
现阶段,运营商支持流量经营、智能管道的数据应用还处于初级水平,数据应用主要采用基于内部整合数据的分析挖掘手段。近期,运营商应着力整合企业内外部数据,做到内部交易数据与互联网交互数据的融合,由此开展用户行为模式的分析与数据挖掘并支撑各类数据应用,包括:支持精细化营销、支持产品规划和创新、支持网络优化和投资、支持能力开放与合作。长远来看,运营商应建立基于大数据驱动,以消费者为中心、以客户体验为重心的企业运营及组织变革模式,如亚马逊将数据化运营贯穿业务全过程,以选品、价格和便利作为亚马逊客户体验的三个支柱。
运营商内部的大数据应用场景可包括以下方面:第一是精确化营销与维系挽留。从海量数据中分析客户行为偏好,结合客户与收入数据,可以实现对现有业务的精确化营销和维系挽留,包括锁定特定业务的目标客户以及锁定可能流失的客户。第二是精确化网络运维。通过对流量和流向的分析,实现网络资源的动态配置;分析网络日志,支撑网络优化和故障定位;通过对客户流量和上网行为偏好的分析,实现智能管道策略的个性化制定以及网络阀值的动态调整。第三是精确化客服支撑。利用大数据实时技术实现客服信息的实时提醒(例如流量使用提醒);利用大数据技术的高速查询性能,提升清(账)单查询速度,并有能力实现客户互联网使用详单查询。第四是关系链研究。收集客户通讯录、通话行为、网络社交行为等大数据以及客户资料等传统数据,开展交往圈分析,利用社交圈子提高营销效率,改进服务,低成本扩大产品的影响力。
对外经营拓展业务模式
运营商对外可充分利用电信行业的数据优势,拓展电信业务模式,将大数据直接产品化,基于客户状态、位置、终端、喜好等,为社会提供信息服务。如:开展广告、数据开放等业务。在广告推送方面,可通过客户上网类别反映的需求动向,精准锁定目标客户,支撑电信业务或者其他商家开展手机定向互联网广告服务。在数据开放方面,数据开放业务除了提供基本的原始数据以外,电信企业还可以利用本系统能力,基于网络信令和互联网客户标签数据分析,形成专业的行业应用报告,精确锁定有需求的潜在客户,为后向商家及内部合作伙伴管理提供准确定量的行业及客户分析报告,实现营销推送、分析评估等能力对外开放。例如:为特定区域(小区或商业区)分析客户群的类型,帮助区域商业规划、门店选址、大型LED广告动态投放等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04