
Netflix被连续五次评为客户最满意的网站,重视客户和应用数据分析用户的习惯已深入企业文化,其先进的数据可视化技术使复杂而庞大的数据变得易于理解、易于分析、易于处理,Netflix形成了一套自己的数据哲学,仅仅是电视剧封面颜色的选择,都运用了强大的数据宝库。从公司高管到普通职员,重视数据的程度让无数公司汗颜,作者Phil Simon是WIRED的技术专家,为我们带来了详细的分析。
像Netflix这样以数据驱动业务的公司,数据可视化发挥着关键的作用,而且数据可视化也很有必要。对于数据可视化,有如下两种定义:广义上讲,数据可视化表示数据通过视觉方式呈现的过程,通常还包含一些互动;狭义上讲,数据可视化表示将数据进行抽象,提取出有价值的信息,并通过一些示意图呈现出来的过程。总之,当代数据可视化技术都可以被纳入所谓的大数据技术。
从Netflix公司的博客可以看出其非常重视数据可视化,Netflix主系统的许多部分都包含数据可视化组件,而且,像其他视觉组织一样,Netflix使用数据可视化工具已经形成了一种习惯。Netflix公司的员工会定期关注新出现的数据可视化工具,并调整算法,获得新的见解,解决紧迫的业务问题。
Jeff Magnusson是该公司数据平台架构部门的经理。2013年6月27日,在Hadoop峰会上,他为我们展示了Netflix大数据时代下不为人知的一面,给我留下了深刻的印象。Magnusson展示的数据易于理解、易于挖掘,每个人都能很容易的对数据进行处理。Charles Smith,软件工程师,也是Magnusson的同事。那次演讲的题目很有意思,叫做“有了Netflix的Hadoop工具包,猪也能飞起来”。在他们的演示中,Magnusson和Smith提到了Netflix数据哲学的三大原则:
Netflix的核心竞争力在于拥有最先进的大数据工具,包括数据可视化应用。这些先进的分析工具满足了两大关键团体:客户和专业技术人员,这一点很重要,而且,满足客户和专业技术人员后,最终将会使每个人都受益,无论是高管、股东、非技术雇员还是其他人。
可以对比一下《纸牌屋》和2010年版《麦克白》的封面。
第一眼看上去,它们惊人的相似。两者都显示了手上沾染鲜血的老年白人——Kevin Spacey和Patrick Stewart,与黑色背景对比得非常鲜明。图3.1进行了详细色彩对比分析:
图3.1表明了一个显而易见的事实:两个节目的封面有很多相同的地方。同时,也有细微的差别存在——而且Netflix可以精确地量化这些差异。更重要的是,Netflix可以了解这些对用户的观看习惯、影片推荐、评级之类是否存在明显的影响。
图3.2显示《纸牌屋》、《发展受阻》、《铁杉树丛》(一部美国惊悚恐怖片,于2013年4月19日首映)三者的颜色对比分析。
鉴于高质量原创电视剧内容的高昂成本(传闻《纸牌屋》制作费高达7800万美元),Netflix会草率地选择一个封面吗?决策者会忘记挖掘一下公司的数据宝库吗?用户已经有无数种选择了,难道Netflix仅仅是为了替用户再增添一个选择? 答案是:NO。Netflix没有邀请外人参加《铁杉树丛》和《纸牌屋》的制作会议,毕竟,Netflix公司拥有的数据足以使其做出最明智的决定,我打赌高管们在选择这部电视剧的封面时,一定仔细参考了订阅服务器的数据。
在Netflix,比较类似照片的色调不是某个无聊的雇员进行一次性试验,它已经成为选择封面的一个必要环节。Netflix公司认识到这些实验的成果有巨大的潜在价值。为此,该公司专门创建了挖掘这种价值的工具。在Hadoop峰会上,Magnusson和Smith告诉我们数据分析为标题、颜色和封面的选择提供了很多帮助。分析颜色可以使公司了解客户与客户之间的差距,甚至能分析出客户心情的变化。
有多少组织能对其客户了解到这种程度?我猜很少,大多数公司都想了解它们的客户,但能做到Netflix公司的一半就很不错了。(本文来自:CDA数据分析师培训官网)
这回避了一个显而易见的问题——为什么要分析客户数据?通过大数据和可视化,分析客户数据,使Netflix可以无缝地为每个客户提供令人难以置信的个性化定制服务,同时,Netflix还可以很容易地整合有关客户的数据,包括影片风格、观看习惯、趋势以及其他一些数据。有了这些数据,Netflix可以尝试解决大多数组织不能解决甚至想不到的一些问题。就颜色和封面而言,这些问题包括:
简而言之,Netflix通过数据分析可以解决很多的问题,基于高质量数据和可视化工具可以做出更好的业务决策,最关键的是它让重视数据和重视数据可视化成为一种企业文化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14