
Netflix被连续五次评为客户最满意的网站,重视客户和应用数据分析用户的习惯已深入企业文化,其先进的数据可视化技术使复杂而庞大的数据变得易于理解、易于分析、易于处理,Netflix形成了一套自己的数据哲学,仅仅是电视剧封面颜色的选择,都运用了强大的数据宝库。从公司高管到普通职员,重视数据的程度让无数公司汗颜,作者Phil Simon是WIRED的技术专家,为我们带来了详细的分析。
像Netflix这样以数据驱动业务的公司,数据可视化发挥着关键的作用,而且数据可视化也很有必要。对于数据可视化,有如下两种定义:广义上讲,数据可视化表示数据通过视觉方式呈现的过程,通常还包含一些互动;狭义上讲,数据可视化表示将数据进行抽象,提取出有价值的信息,并通过一些示意图呈现出来的过程。总之,当代数据可视化技术都可以被纳入所谓的大数据技术。
从Netflix公司的博客可以看出其非常重视数据可视化,Netflix主系统的许多部分都包含数据可视化组件,而且,像其他视觉组织一样,Netflix使用数据可视化工具已经形成了一种习惯。Netflix公司的员工会定期关注新出现的数据可视化工具,并调整算法,获得新的见解,解决紧迫的业务问题。
Jeff Magnusson是该公司数据平台架构部门的经理。2013年6月27日,在Hadoop峰会上,他为我们展示了Netflix大数据时代下不为人知的一面,给我留下了深刻的印象。Magnusson展示的数据易于理解、易于挖掘,每个人都能很容易的对数据进行处理。Charles Smith,软件工程师,也是Magnusson的同事。那次演讲的题目很有意思,叫做“有了Netflix的Hadoop工具包,猪也能飞起来”。在他们的演示中,Magnusson和Smith提到了Netflix数据哲学的三大原则:
Netflix的核心竞争力在于拥有最先进的大数据工具,包括数据可视化应用。这些先进的分析工具满足了两大关键团体:客户和专业技术人员,这一点很重要,而且,满足客户和专业技术人员后,最终将会使每个人都受益,无论是高管、股东、非技术雇员还是其他人。
可以对比一下《纸牌屋》和2010年版《麦克白》的封面。
第一眼看上去,它们惊人的相似。两者都显示了手上沾染鲜血的老年白人——Kevin Spacey和Patrick Stewart,与黑色背景对比得非常鲜明。图3.1进行了详细色彩对比分析:
图3.1表明了一个显而易见的事实:两个节目的封面有很多相同的地方。同时,也有细微的差别存在——而且Netflix可以精确地量化这些差异。更重要的是,Netflix可以了解这些对用户的观看习惯、影片推荐、评级之类是否存在明显的影响。
图3.2显示《纸牌屋》、《发展受阻》、《铁杉树丛》(一部美国惊悚恐怖片,于2013年4月19日首映)三者的颜色对比分析。
鉴于高质量原创电视剧内容的高昂成本(传闻《纸牌屋》制作费高达7800万美元),Netflix会草率地选择一个封面吗?决策者会忘记挖掘一下公司的数据宝库吗?用户已经有无数种选择了,难道Netflix仅仅是为了替用户再增添一个选择? 答案是:NO。Netflix没有邀请外人参加《铁杉树丛》和《纸牌屋》的制作会议,毕竟,Netflix公司拥有的数据足以使其做出最明智的决定,我打赌高管们在选择这部电视剧的封面时,一定仔细参考了订阅服务器的数据。
在Netflix,比较类似照片的色调不是某个无聊的雇员进行一次性试验,它已经成为选择封面的一个必要环节。Netflix公司认识到这些实验的成果有巨大的潜在价值。为此,该公司专门创建了挖掘这种价值的工具。在Hadoop峰会上,Magnusson和Smith告诉我们数据分析为标题、颜色和封面的选择提供了很多帮助。分析颜色可以使公司了解客户与客户之间的差距,甚至能分析出客户心情的变化。
有多少组织能对其客户了解到这种程度?我猜很少,大多数公司都想了解它们的客户,但能做到Netflix公司的一半就很不错了。(本文来自:CDA数据分析师培训官网)
这回避了一个显而易见的问题——为什么要分析客户数据?通过大数据和可视化,分析客户数据,使Netflix可以无缝地为每个客户提供令人难以置信的个性化定制服务,同时,Netflix还可以很容易地整合有关客户的数据,包括影片风格、观看习惯、趋势以及其他一些数据。有了这些数据,Netflix可以尝试解决大多数组织不能解决甚至想不到的一些问题。就颜色和封面而言,这些问题包括:
简而言之,Netflix通过数据分析可以解决很多的问题,基于高质量数据和可视化工具可以做出更好的业务决策,最关键的是它让重视数据和重视数据可视化成为一种企业文化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28