京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据时代下,“大数据”已经成为出现频度最高的词语,大数据受到的关注越来越多,“大数据”基本上是一个包罗万象的术语,指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面。过去数据分析可能需要昂贵的数据库和专业化的技术,近几年,与大数据概念有关的创业公司如雨后春笋般涌现出来,如果你愿意,完全有条件用低廉的成本使用大数据分析。
无论是来自一般商业领域,还是零售、医疗、气候等专门领域的大数据都可用来盈利,这种可能性让投资界重新兴奋起来。
笔者收集了几家成长迅猛,并已经获得风险投资的创业公司:
【Splunk】
美国商业智能软件提供商Splunk,创立于2004年,2012年在纳斯达克上市,成为首家上市的大数据公司。目前在12个国家拥有700多名员工,最早通过分析日志数据排除机器故障,现在其软件可用于监控、分析实时的机器数据以及TB级的历史数据。今天所有的网站、通信和复杂IT基础设施每时每刻都在生成大量数据流,Splunk的技术特别适合于实时数据分析,帮助用户需要及时地了解业务发展趋势。
【Tableau】
美国计算机软件公司Tableau创立于2003年,总部位于西雅图,Tableau软件的研发最早源于美国国防部的一个项目,当时为了提高人们分析信息的能力,国防部召集了斯担福大学计算机科学专业的人才,以及专门探索和分析数据库和多维数据集可视化技术研究的着名教授Pat Hanrahan和他的博士学生Chris Stolte,他们很快认识到计算机图形可以帮助人们提高理解信息的能力。Tableau开发的桌面系统中最简单的商业智能工具软件,适合企业和部门进行日常数据报表和数据可视化分析工作,它将数据运算与美观的图表完美地嫁接在一起。
从2003年成立,2010年Tableau营收达到3420万美元,2011年增长到6240万美元,2012年增长到1.28亿美元。
【Cloudera】
美国大数据软件公司Cloudera,由来自Facebook、谷歌和雅虎的前工程师、甲骨文前高管在2008年创建,短短的几年时间里,Cloudera已从一家默默无闻的创业公司,发展成为企业在应对数据挑战时不得不依赖的公司。
Cloudera 利用Hadoop 这一开源技术帮助公司搭建他们的大数据系统,Hadoop 可以利用一些价格低廉的硬件就完成大量的数据分析,所以非常受大小企业欢迎。
Cloudera利用流行的开源软件Hadoop,帮助诺基亚、高通和Groupon等公司储存和处理大数据。
【HortonWorks】
Hortonworks是一家Hadoop初创公司,2011年7月由雅虎与硅谷风投Benchmark Capital合资组建。创立之初仅有不到30名员工,大多来自雅虎专门研究Hadoop的元老级工程师,这个团队几年前开发了雅虎内部一个开源项目Hadoop。Hortonworks公司正努力让更多的人使用Hadoop,并大胆预测这项技术将在未来五年内处理世界上一半的数据。
作为又一家基于Hadoop框架提供大数据服务的创业公司,Hortonworks在短短两年多的时间里就成长起来,引起业界关注。
Hortonworks对公司的融资情况一直讳莫如深。但风投公司Benchmark Capital的普通合伙人彼得·芬顿(Peter Fenton)是该公司的投资者和公司董事会成员。
【MapR】
MapR公司是美国加州的圣何塞市的一个企业管理软件公司,主要专注于可用性和数据安全优化和开发、销售Apache Hadoop的衍生软件。MapR号称下一代Hadoop,使Hadoop变为一个速度更快、可靠性更高、更易于管理、使用更加方便的分布式计算服务和存储平台,同时性能也不断提高。MapR通过为Hadoop用户提供专业咨询服务来获取收入。
MapR目前大约一半的客户是传统的Web和基于云计算的公司,而另一半则是金融、电信和制造公司。
评论:
大数据为风险投资带来了新的市场契机,对于一些敏锐的风险投资者来说,他们最早看到未来的方向,从中发现商机,过去的几年只是一个开始,可以预见大数据行业未来十年仍然会是创业公司的机遇地,这对一些创业公司来说,无疑是一大利好消息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12