
大数据真正的财富蕴含在产业链条而非消费链条
一、哪些公司有互联网分析师?
二、这些分析师具体工作内容、汇报领导、交付物是啥?
先回答第一个互联网分析师都哪有:
1、国外针对二级市场投资的基金机构,
通俗点讲国外人想投资中国的美股股票,但不了解中国这些互联网公司;
那这些外国的基金机构就必然有人了解;这些分析师有常驻国内的,有常驻美国的;
2、国内针对二级市场投资的基金机构,
基础逻辑和1一样,随着国内互联网相关的上市公司开始多了,国内一些基金也有了专门针对互联网方向的分析师;当然国内的互联网相关上市公司还不是太多,按照他们的说法就是标的不够多,所以国内一般的基金机构都是说IT行业分析师,互联网隶属IT行业;
3、咨询机构、咨询公司
也称顾问公司,国内的咨询行业由来已久;越来越多的行业开始和互联网相结合,在咨询结构服务各行各业的企业过程中也是需要有人了解互联网行业,了解这个行业的打法的;
4、第三方调研机构
比如艾瑞、DCCI、易观这样的以数据、行业信息为主的提供方,这些机构一般出具各种数据、行业发展报告,组织行业沙龙聚会,这里面必然也是需要有人分析的;
5、大互联网公司
一般国内的大互联网公司都有所谓的行业分析部门、战略部门、战略投资部;(百度、阿里、腾讯、盛大、网易、新浪、搜狐等都有),这样的部门里的基础分析工作也是要有人做的;
6、针对一级市场的VC
我的工作就是,这类分析师做的事情主要根据VC所处的阶段不同;早期VC更多要求分析师对行业的理解、对项目的把握,偏后期一点的基金公司则更侧重财务模型、资本市场运作一些;
除此之外,自然还有一些江湖上的砖家们自称分析师,这里不展开了。
那么这么多地方有分析师,他们工作都干吗呢?我还是一个一个的说:
1、国外针对二级市场投资的基金机构
分析已经上市的互联网公司股票、公司财务状况、业务状况 、竞争对手态势和预测可能的走势;所以他们主要的工作是看已经上市公司及相关的竞争对手/细分领域的信息;
工作的交付物更多是投行出的分析报告,比如这种:《 德意志银行-中国互联网行业研究报告2011年12月(109页).pdf 》
编写这个报告的分析师之一我认识,就在上海,他日常工作就是和国内的互联网公司的投资者关系部门沟通、参与这些公司的财报电话会议、提出问题、分析、给出总结、趋势和预测等;
2、国内针对二级市场投资的基金机构其实和上面的类似,但他们更关注国内的上市互联网公司相关情况,他们的工作内容也是和各大上市公司董秘了解公司情况,参与财报发布等;至于交付物就是各种类型的研究报告:可以看下这里,我说过国内因为上市互联网公司不多,所以更多基金采用的TMT的分类方式;
3、咨询公司
这类公司内的分析师更多承担的工作是信息搜集,而搜集的目的一般根据雇主的行业、阶段、要求来;比如一家传统做服装的公司想做电商,就有可能找咨询公司做做参谋;咨询公司能提供的服务就是讲解行业、参与公司、一些特定公司案例等;他们的交付物可能是PPT、可能是学习材料,也可能是咨询师的一个讲座。
4、第三方调研机构
这个就更方便大家理解了,各家结构都有侧重,熟悉艾瑞的同学也基本知道,交付物主要是行业报告;
5、大互联网公司
这个类目的分析师其实最不好定义,他们可能是产品经理、可能是BD、可能是,甚至可能是HR;我的老东家就有隶属不同三个事业部的三个这样的部门;根据不同事业部的分工我们的工作内容也有区别,但大体上就是行业分析、竞品分析、趋势预测等;主要供公司领导做决策参考;
6、VC
我现在的工作,我所在的基金是一家比较关注早期的VC,所以分工明确;我主要看移动互联网方向,工作内容主要是看行业发展的趋势、细分领域的投资机会、具体项目的产品-团队-商业模式分析;说的有点悬,简单讲就是看方向、想要点、找项目、项目判断;我们工作的交付物一般是行业报告和具体的项目分析;
比如我的同行做的关于美国SOLOMO模式的分析报告;大体看完我上面两段的描述,我想一般XD应该了解了这个职位要做的事情;最后扯点别的,为啥这个称呼最近被频繁的………………大家都懂得…………
我闲的蛋疼的想了想几个原因:
1、目前微博上的分析师们,大部分并不是互联网行业出来的人,所以更多是用旁观者的角度看行业;(当然还是有很多从产业里出来的人)。
2、微博和知乎里的互联网大拿太多,卧虎藏龙;大家其实对于自己所从事的行业都有比较深入的了解,所以当看到一些非常浅显的、说了等于没说的、不是干货的内容,会自然而然的觉得不靠谱;
3、很多分析,尤其偏于二级市场的分析是基于财务数据、行业发展之后的结果做出的,所以有些时候会觉得这些分析都是“马后炮”(文章来源:CDA数据分析师培训官网)
4、最后一点,确实有些人不懂装懂。
回到这个问题的初始 ,其实互联网分析师这个职位看上去很美,但真正在做的人都知道其难度有多大,正如过去的2年大家常挂在嘴边的“产品经理”抬头一样……………
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12