
数据的价值:数据有哪些商业模式
数据是非常有价值的,它有助于创造优品、形成一个进入壁垒,甚至可以直接货币化。本篇文章将想分析「公司利用数据的价值」,将有三部分组成。
在这篇文章中,我将谈谈对数据进行货币化的重要途径。然后,我将提供一个列表,主要说说有关数据集的一些具体商业模式。这份列表将随着时间的推荐而扩大。
根据维基百科的资料,「商业模型是一个理论工具,它能显示一个公司在以下一个或多个方面的价值所在:客户,公司结构,以及,以营利和可持续性盈利为目的,用以生产,销售,传递价值及关系资本的客户网。」数据的商业模式就是数据是一个不可或缺的组成部分。如果你删除数据,那意味着你的业务会失败(或者至少遭受极大的损失)。
举个例子,亚马逊的核心业务数据。他们的历史交易数据帮助他们分析还有多少库存持有以及如何定价产品。此外,有关产品的数据视图和购买推荐引擎,驱动着销售的大部分数据。作为锦上添花,这一切是一个良性循环:建议购买,这导致更多的评论,进而导致更好的搜索引擎优化和更多的流量,从而带来更多的客户和更好的建议。如果亚马逊不那么有效使用数据,这将是一个规模小得多的公司。
数据业务模型最好的部分是,他们经常有和「亚马逊一样」的积极正向反馈。在每一个业务模型中,你越是用数据来赚钱,你得到的结果是,它可以帮助你赚更多的钱在未来更多的数据。这是一个美丽的系统。
数据是产品或服务。如果你有一个有价值的数据集,别人会支付访问,那么你可以直接出售(如Factual、FullContact、Yodlee公司)或建立唯一的接入点和间接出售它(如DataFox、Mattermark、彭博和LoopNet)。
数据有助于推动收入。当你了解客户的喜好,你可以提高有关产品的建议,并大大增加每个客户的终身价值。这是为什么亚马逊和大多数电子商务公司更成功的原因所在。如果你正在构建的内容存储库(这是数据的一种形式),你可以用它来驱动广告。你还可以使用数据你的用户数据定位更好的广告赚钱,像Facebook和Twitter就是这么做的。
数据有助于提高利润率。可能的方式包括转化渠道的优化、价格优化、准确的供需预测。例如,亚马逊在线市场里的每家公司都使用A / B测试。例如,提高利润率可能看上去不像是一个巨大的交易,但能够使得收购成本降低40%,同时收入增加50%。通过产品推荐可以把一个企业从业务不可行变成很赚钱。
上面的商业模式是伟大的,但有些抽象。你怎么能把它们变成实际的业务?下面是对不同类型的产品的一些具体配方:
内容公司
建立一个内容网站,利用参与数据来决定制作哪些内容(如BuzzFeed,Bleacher Report)
建立一个用户生成内容的网站,显示相关广告、会员链接、产品推荐旁边的内(例如Yelp,Pinterest,Quora)
使用行为数据来创建更好的内容建议和更高的订阅,然后收取使用费用(如Pandora,Netflix)
电子商务
使用购买和转换数据,以实现利润最大化的价格(如亚马逊,eBay,大多数电子商务公司)
使用数据来创建更好的产品推荐(如Warby Parker,Lumoid,True&Co)
(这两种配方也可以应用到其他公司,如SaaS的初创企业,但对利润率较低的电子商务公司有更深入的影响。因为较低的利润率,一个SaaS公司的利润率从50%到75%这是伟大的,但电子商务公司20%的利润率就足以保证它变成一个真正的生意。)
数据提供商
出售优质的数据(LinkedIn订阅,IMDB Pro,DataFox,LoopNet)。
出售API访问原始数据(Factual,Clearbit,Yodlee)
帮助客户增加他们的数据集与外部数据(如Factual的位置数据,和Zephyr Healthf的健康数据,Socrata的政府数据)。这不同于销售数据,因为该模型更多的是向客户销售一个完整独立的数据集。这种模式更多的是帮助那些已经有客户的一些数据的公司。这种商业模式往往是更加依赖于整合和删除重复数据,通过算法在进行数据采集。
B2B和B2C工具
用产品使用的数据构建模型(如LendUp的信用评分,Sift Science的欺诈检测,Framed Data的流失预测,Metromile的汽车保险)。增加产品的使用会导致更好的模型,这两者都是更有价值的客户和更多竞争对手难以复制。
建立一个消费者应用程序,为客户收集数据节省了时间,,结果(如收件箱一样的组织工具Unroll.Me,购物相关的工具,如Honeyand 和 Two Tap,,以及像Bento一样的智能发射器和)。此数据可以用于更好的建议或广告定位,并且通常可以通过会员费被货币化。
打造一个SaaS产品,使得一些行业的效率更高,通常是通过在线的形式代替传真、语音邮件、电子邮件。使用表格数据构建杀手锏(如FlexPort,SimpleLegal,Sourcery)
所有这些商业模式的,最后一个是我的最爱。它的建立,可以为效率发挥销售的工具,使用该工具作为一个特洛伊木马来收集数据,然后把数据变成一个巨大的竞争护城河。这种商业模式使得它容易建立一个有价值的数据集,因为你并不需要开始的数据-。你只需要简化客户数据录入。然后,一旦你有一个数据集,你是不可阻挡的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10