京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据的价值:数据有哪些商业模式
数据是非常有价值的,它有助于创造优品、形成一个进入壁垒,甚至可以直接货币化。本篇文章将想分析「公司利用数据的价值」,将有三部分组成。
在这篇文章中,我将谈谈对数据进行货币化的重要途径。然后,我将提供一个列表,主要说说有关数据集的一些具体商业模式。这份列表将随着时间的推荐而扩大。
根据维基百科的资料,「商业模型是一个理论工具,它能显示一个公司在以下一个或多个方面的价值所在:客户,公司结构,以及,以营利和可持续性盈利为目的,用以生产,销售,传递价值及关系资本的客户网。」数据的商业模式就是数据是一个不可或缺的组成部分。如果你删除数据,那意味着你的业务会失败(或者至少遭受极大的损失)。
举个例子,亚马逊的核心业务数据。他们的历史交易数据帮助他们分析还有多少库存持有以及如何定价产品。此外,有关产品的数据视图和购买推荐引擎,驱动着销售的大部分数据。作为锦上添花,这一切是一个良性循环:建议购买,这导致更多的评论,进而导致更好的搜索引擎优化和更多的流量,从而带来更多的客户和更好的建议。如果亚马逊不那么有效使用数据,这将是一个规模小得多的公司。
数据业务模型最好的部分是,他们经常有和「亚马逊一样」的积极正向反馈。在每一个业务模型中,你越是用数据来赚钱,你得到的结果是,它可以帮助你赚更多的钱在未来更多的数据。这是一个美丽的系统。
数据是产品或服务。如果你有一个有价值的数据集,别人会支付访问,那么你可以直接出售(如Factual、FullContact、Yodlee公司)或建立唯一的接入点和间接出售它(如DataFox、Mattermark、彭博和LoopNet)。
数据有助于推动收入。当你了解客户的喜好,你可以提高有关产品的建议,并大大增加每个客户的终身价值。这是为什么亚马逊和大多数电子商务公司更成功的原因所在。如果你正在构建的内容存储库(这是数据的一种形式),你可以用它来驱动广告。你还可以使用数据你的用户数据定位更好的广告赚钱,像Facebook和Twitter就是这么做的。
数据有助于提高利润率。可能的方式包括转化渠道的优化、价格优化、准确的供需预测。例如,亚马逊在线市场里的每家公司都使用A / B测试。例如,提高利润率可能看上去不像是一个巨大的交易,但能够使得收购成本降低40%,同时收入增加50%。通过产品推荐可以把一个企业从业务不可行变成很赚钱。
上面的商业模式是伟大的,但有些抽象。你怎么能把它们变成实际的业务?下面是对不同类型的产品的一些具体配方:
内容公司
建立一个内容网站,利用参与数据来决定制作哪些内容(如BuzzFeed,Bleacher Report)
建立一个用户生成内容的网站,显示相关广告、会员链接、产品推荐旁边的内(例如Yelp,Pinterest,Quora)
使用行为数据来创建更好的内容建议和更高的订阅,然后收取使用费用(如Pandora,Netflix)
电子商务
使用购买和转换数据,以实现利润最大化的价格(如亚马逊,eBay,大多数电子商务公司)
使用数据来创建更好的产品推荐(如Warby Parker,Lumoid,True&Co)
(这两种配方也可以应用到其他公司,如SaaS的初创企业,但对利润率较低的电子商务公司有更深入的影响。因为较低的利润率,一个SaaS公司的利润率从50%到75%这是伟大的,但电子商务公司20%的利润率就足以保证它变成一个真正的生意。)
数据提供商
出售优质的数据(LinkedIn订阅,IMDB Pro,DataFox,LoopNet)。
出售API访问原始数据(Factual,Clearbit,Yodlee)
帮助客户增加他们的数据集与外部数据(如Factual的位置数据,和Zephyr Healthf的健康数据,Socrata的政府数据)。这不同于销售数据,因为该模型更多的是向客户销售一个完整独立的数据集。这种模式更多的是帮助那些已经有客户的一些数据的公司。这种商业模式往往是更加依赖于整合和删除重复数据,通过算法在进行数据采集。
B2B和B2C工具
用产品使用的数据构建模型(如LendUp的信用评分,Sift Science的欺诈检测,Framed Data的流失预测,Metromile的汽车保险)。增加产品的使用会导致更好的模型,这两者都是更有价值的客户和更多竞争对手难以复制。
建立一个消费者应用程序,为客户收集数据节省了时间,,结果(如收件箱一样的组织工具Unroll.Me,购物相关的工具,如Honeyand 和 Two Tap,,以及像Bento一样的智能发射器和)。此数据可以用于更好的建议或广告定位,并且通常可以通过会员费被货币化。
打造一个SaaS产品,使得一些行业的效率更高,通常是通过在线的形式代替传真、语音邮件、电子邮件。使用表格数据构建杀手锏(如FlexPort,SimpleLegal,Sourcery)
所有这些商业模式的,最后一个是我的最爱。它的建立,可以为效率发挥销售的工具,使用该工具作为一个特洛伊木马来收集数据,然后把数据变成一个巨大的竞争护城河。这种商业模式使得它容易建立一个有价值的数据集,因为你并不需要开始的数据-。你只需要简化客户数据录入。然后,一旦你有一个数据集,你是不可阻挡的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27