
数据的价值:数据有哪些商业模式
数据是非常有价值的,它有助于创造优品、形成一个进入壁垒,甚至可以直接货币化。本篇文章将想分析「公司利用数据的价值」,将有三部分组成。
在这篇文章中,我将谈谈对数据进行货币化的重要途径。然后,我将提供一个列表,主要说说有关数据集的一些具体商业模式。这份列表将随着时间的推荐而扩大。
根据维基百科的资料,「商业模型是一个理论工具,它能显示一个公司在以下一个或多个方面的价值所在:客户,公司结构,以及,以营利和可持续性盈利为目的,用以生产,销售,传递价值及关系资本的客户网。」数据的商业模式就是数据是一个不可或缺的组成部分。如果你删除数据,那意味着你的业务会失败(或者至少遭受极大的损失)。
举个例子,亚马逊的核心业务数据。他们的历史交易数据帮助他们分析还有多少库存持有以及如何定价产品。此外,有关产品的数据视图和购买推荐引擎,驱动着销售的大部分数据。作为锦上添花,这一切是一个良性循环:建议购买,这导致更多的评论,进而导致更好的搜索引擎优化和更多的流量,从而带来更多的客户和更好的建议。如果亚马逊不那么有效使用数据,这将是一个规模小得多的公司。
数据业务模型最好的部分是,他们经常有和「亚马逊一样」的积极正向反馈。在每一个业务模型中,你越是用数据来赚钱,你得到的结果是,它可以帮助你赚更多的钱在未来更多的数据。这是一个美丽的系统。
数据是产品或服务。如果你有一个有价值的数据集,别人会支付访问,那么你可以直接出售(如Factual、FullContact、Yodlee公司)或建立唯一的接入点和间接出售它(如DataFox、Mattermark、彭博和LoopNet)。
数据有助于推动收入。当你了解客户的喜好,你可以提高有关产品的建议,并大大增加每个客户的终身价值。这是为什么亚马逊和大多数电子商务公司更成功的原因所在。如果你正在构建的内容存储库(这是数据的一种形式),你可以用它来驱动广告。你还可以使用数据你的用户数据定位更好的广告赚钱,像Facebook和Twitter就是这么做的。
数据有助于提高利润率。可能的方式包括转化渠道的优化、价格优化、准确的供需预测。例如,亚马逊在线市场里的每家公司都使用A / B测试。例如,提高利润率可能看上去不像是一个巨大的交易,但能够使得收购成本降低40%,同时收入增加50%。通过产品推荐可以把一个企业从业务不可行变成很赚钱。
上面的商业模式是伟大的,但有些抽象。你怎么能把它们变成实际的业务?下面是对不同类型的产品的一些具体配方:
内容公司
建立一个内容网站,利用参与数据来决定制作哪些内容(如BuzzFeed,Bleacher Report)
建立一个用户生成内容的网站,显示相关广告、会员链接、产品推荐旁边的内(例如Yelp,Pinterest,Quora)
使用行为数据来创建更好的内容建议和更高的订阅,然后收取使用费用(如Pandora,Netflix)
电子商务
使用购买和转换数据,以实现利润最大化的价格(如亚马逊,eBay,大多数电子商务公司)
使用数据来创建更好的产品推荐(如Warby Parker,Lumoid,True&Co)
(这两种配方也可以应用到其他公司,如SaaS的初创企业,但对利润率较低的电子商务公司有更深入的影响。因为较低的利润率,一个SaaS公司的利润率从50%到75%这是伟大的,但电子商务公司20%的利润率就足以保证它变成一个真正的生意。)
数据提供商
出售优质的数据(LinkedIn订阅,IMDB Pro,DataFox,LoopNet)。
出售API访问原始数据(Factual,Clearbit,Yodlee)
帮助客户增加他们的数据集与外部数据(如Factual的位置数据,和Zephyr Healthf的健康数据,Socrata的政府数据)。这不同于销售数据,因为该模型更多的是向客户销售一个完整独立的数据集。这种模式更多的是帮助那些已经有客户的一些数据的公司。这种商业模式往往是更加依赖于整合和删除重复数据,通过算法在进行数据采集。
B2B和B2C工具
用产品使用的数据构建模型(如LendUp的信用评分,Sift Science的欺诈检测,Framed Data的流失预测,Metromile的汽车保险)。增加产品的使用会导致更好的模型,这两者都是更有价值的客户和更多竞争对手难以复制。
建立一个消费者应用程序,为客户收集数据节省了时间,,结果(如收件箱一样的组织工具Unroll.Me,购物相关的工具,如Honeyand 和 Two Tap,,以及像Bento一样的智能发射器和)。此数据可以用于更好的建议或广告定位,并且通常可以通过会员费被货币化。
打造一个SaaS产品,使得一些行业的效率更高,通常是通过在线的形式代替传真、语音邮件、电子邮件。使用表格数据构建杀手锏(如FlexPort,SimpleLegal,Sourcery)
所有这些商业模式的,最后一个是我的最爱。它的建立,可以为效率发挥销售的工具,使用该工具作为一个特洛伊木马来收集数据,然后把数据变成一个巨大的竞争护城河。这种商业模式使得它容易建立一个有价值的数据集,因为你并不需要开始的数据-。你只需要简化客户数据录入。然后,一旦你有一个数据集,你是不可阻挡的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27