京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据定义?7个经典观点让你看穿大数据
尽管大数据的定义各家歧异,但基本上,大数据领域里的每个人都同意一点:大数据不仅仅是指更多资料而已。这里有 7 个重要的大数据观点,希望大家不只是看着大数据的表皮,而能用不同的角度深入检视大数据。
1) 最基本的大数据定义
大数据的 3Vs 定义是目前为止最受推崇且最广为人知的说法。3Vs 由 Gartner 的分析师Doug Laney 最早在 2001 年时提出,分别代表资料量 Volume、资料传输速度 Velocity、资料类型 Variety。从那之后,便有人在 3Vs 之外陆续提出更多「V」, Veracity、Validity、Value、Visibility 等,其中又以 Veracity (真实性)最被普遍认同,合为”4Vs”。
2) 大数据即科技
大数据并不是什么崭新的概念,好几十年前 CERN 的科学家就在处理每秒上看 PB (Peta Bytes)巨量资料。那为什么一直到近几年“大数据”这颗原子弹才被投到科技圈,轰得人人叁句不离大数据?
现今要处理的资料量更庞大、资料产生跟处理速度更惊人、资料来源更多样,于是处理、储存大量资料的新技术跟工具快速发展,像是开源软体 Hadoop 跟 NoSQL 资料库。新科技诞生后,开发者跟使用者需要一个专业名词来与之前的科技作出区别,于是“大数据”一词因应而生。随之而来,大数据相关公司也雨后春笋般崛起,如国云数据等,成为中国大数据企业的先行者。
因此大数据不只是指资料,也指这些用来分析、处理巨量资料的新兴科技。
3) 大数据即不同的资料类型
现今”大数据“所涉及的资料已经和过去的资料已经不同了。根据 Hortonworks 公司战略副总裁 Shaun Connolly 的说法1,过去的资料大部分是人工手记下来的交易纪(Transactions),现在则是机器替我们记录下来的交易资料;除此之外,还有人们跟事物、企业间的互动资料(Interactions)。例如人们在网路上点击网页跟连结的纪录;最后则是机器自动生成、累积下来的观察资料(Observations),例如智慧型家居产品记录下来的室温变化等。
因此 Shaun Connolly 定义大数据是由交易、互动、观察资料所组成的资料型态。
4) 大数据即讯号
SAP 公司的高管 Steve Lucas 不以资料型态来看待大数据,而是以目的(intent)跟时机(timing)。在过去,企业收集到的资料只能在事情发生后引以为鉴,但现在企业收集到的是「新讯号」2,可以在事情发生前得到前兆跟提示,进而做出行动来影响事情结果。例如某品牌广告在社群网站上的「赞」数、点阅率如果跌落谷底,公司便可以预期接下来产品销售量一定也会惨不忍睹;同样的情形在过去时,公司所得到的数据就是产品发售后的销售量。
5) 大数据即机会
根据 451 Research 的数据专家 Matt Aslett,他将大数据定义为“以前因为科技所限而忽略的资料”,这个说法也受到许多人的赞同,因为多半提起大数据时,都是在讨论这些以前无法分析处理、囊括其中的资料。
“Big Data is data that was previously ignored because of technology limitations.”
其实他在文中并不是用 Big Data 一字,而是使用“Dark Data(暗数据)”。事实上许多公司都使用暗数据这个字,因为当资料变“暗”了,便表示一个漏掉的讯息、错失的机会,在企业策略中留下一个盲点4。一直以来,各企业雇用数据专家的目的就是希望能“点亮”这些暗数据(illuminate the Dark Data),观察到以前不曾注意过的趋势、做出更全面的考量。
也因此,SAP 曾经做过一个调查显示,将近 76% 的企业高管们视大数据为“机会”。个人也满喜欢这个观点,毕竟现在各公司在推动大数据的塬因,就是希望能掌握全面的讯息、把握住这些机会!
6) 大数据的哲学定义
著名的摄影师和出版人,前《Time(时代)》、《Life(生活)》、《National Geographic(国家地理)》杂誌摄影师,负责过有史以来最大摄影项目的 Rick Smolan ,在他的着作《大数据的人性面孔》(The Human Face of Big Data)一书中,则给了大数据一个最完美的哲学定义 ——“大数据是帮助地球建构神经系统的一个过程,在这系统中,我们(人类)不过是其中一种感测器。”
7) 大数据是旧东西的新噱头
也有部份人认为,“大数据”一词被严重滥用,大数据只是商业智慧(Business intelligence)或商业分析(Business analytics)演化后的新字。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01