京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要开拓的下一个疆域是个人
大数据和个人数据正汇集到一起,构筑互联网上最令人惊叹的消费者产品。它们会预测你的需要,存储你的记忆——如果你允许它们这么做的话。
你会用你的个人数据换取对未来的一瞥吗?安德烈亚斯·韦恩德(Andreas Weigend)就这么做了。
韦恩德曾是亚马逊网站的首席科学官,现任斯坦福大学社会数据实验室主管。他给我说了一个他自己的故事。某天,他在天亮时分醒来,准备去机场搭乘从上海飞来的航班。这时,他刚开始使用的应用程序Google Now告诉他,这趟航班延误了。
这个软件会在用户的Gmail邮箱、日程表,以及地图和航班时刻表之类的数据库里四下查看。它在韦恩德的出行计划中发现了这个小差错,于是提醒他不需要赶时间。韦恩德登机时,飞机上的其他人都已经在机场枯坐了好几个小时,要等飞机的一个备用部件运抵。
韦恩德提供消费者行为方面的咨询,也就这些内容授课。他语速很快。对他来说,他经历的这类小插曲显示了“一个基于10倍数据的社会所具有的能力”。他说,如果上个世纪的标志性成就是对有形物质互动的观察能力(想想X光和雷达技术),那么本世纪的标志性能力将是通过人们与他人分享的个人数据来研究他们。
像Google Now这样所谓的预期系统是未来技术的例子之一。我们已经看到了大数据给广告这类可以一次测量数百万人的行为的业务所带来的转变。现在数据科学家们正在思考大数据如何能够帮助个人。及时通知一架联航班机的飞行情况可能是比较乏味的应用之一。但是,想象一下这样的数据模式:它能告诉你该找什么工作,或者在你感觉不适之前就提醒你可能感冒了。
计算机能够获得的个人数据正在极大膨胀,推动了这样的趋势。根据咨询公司IDC的统计,全世界创造的数字数据每两年增加一倍,而其中大部分是由消费者生成的:电影下载、IP语音电话、电子邮件、手机位置显示等等。但其中仅有约0.5%的数据被分析过。
“存在着那么多数据可以拿来服务于个人的需要,而且是可负担的,”在伦敦大学学院研习社交网络的数据学家帕特里克·沃尔夫(Patrick Wolfe)说,“统计学的优势来自于把人们汇集在一起,但这之后,锦上添花的事是把你的发现个人化。”
谷歌、Facebook、LinkedIn这些硅谷的数据精炼厂把合并大数据和个人数据作为一个目标已经有些日子了。这种合并创造出广告商可以使用的工具,也创造出尤其“让人上瘾”的产品。毕竟,有什么比你自己更有趣呢?Facebook告诉你谁可能是你的朋友。你给Google Now的数据越多,它会为你服务得更好。
暴露更多个人数据似乎无可避免。韦恩德说,随着装载了加速器、摄像头和GPS的智能手机的销量大增,“人们已经获得了收集和传送个人数据的装备”。而这可能只是刚开始。已经有一小批技术爱好者发起了“自我量化”运动:在自己身上装上传感器、计步器,甚至植入葡萄糖监测器。在本期商业报告中,我们将介绍搜索引擎Wolfram Alpha的创造者斯蒂芬·沃尔弗拉姆(Stephen Wolfram)。沃尔弗拉姆参与一个大型的自我跟踪项目已有多年。他把自己的电子邮件、敲击电脑键盘,甚至身体运动的情况都记录归档。他对预测性应用程序感兴趣,称它们为“个人分析”。他认为,就像他的搜索引擎试图组织、整理全世界所有的事实,“在个人分析中,你需要做的是试着把某个人的人生方方面面的信息聚集起来。”
沃尔弗拉姆说,现有的障碍是一些最有用的数据没被捕捉到,至少不能被轻易获得。部分原因是技术上的:缺乏整合。但大量数据是由Facebook、苹果和Fitbit(一个流行的计步器的生产商)这类私人公司存储着。现在,个人数据的价值日益显见,争端正在酝酿中。加州议员们今年提出了“知情权”(Right to Kow)法案,要求公司向个人公布他们储藏的“个人信息”,也就是每次追踪方位和IP地址的数字拷贝。
这项法案是要求隐私保护和问责的社会运动的一部分。与此同时,它也对数据提供者和数据运用者之间的经济关系做出了重新安排。人们想更多地从大数据直接获益,对此业界做出了怎样的回应?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09