京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		大数据学习离我们从未如此之近
	
2015年初,大数据领域公认权威、百万级超级畅销书《大数据时代》作者、牛津大学互联网研究所迈尔-舍恩伯格教授的新作《与大数据同行:学习和教育的未来》的中文版在国内出版,该书以浅显易懂的语言讲述了最前沿的理念——大数据将如何改变教育。
		
	
书中指出,大数据正悄悄影响到教育体系的每个层面,对于全世界的学习与教育活动,都会产生极为深远的影响。他用MOOC、可汗学院、Duolingo语言教育等案例,论证了蓬勃发展的在线教育领域产生了大数据,教育不只是“你讲我听”、考试评分或是选修科目更多而已。历史上第一次,我们拥有了强大、具有实证效果的工具,能够空前的看到学习的过程,破解过去不可能发现的重重学习阻碍,让教育可以实现“私人定制”,改善学习的成效。教师的工作不但不会被网络视频所代替,还会变得更高效,更有趣,学校和政府部门也能用更低的成本提供更多的教育机会。在这一刻,我们可以清晰地看到:一个全新的教育时代正在到来!
2015年10月10日,记忆工场在中国北京发布了Memoryer 3.0神经网络英语单词学习记忆系统(www.memoryer.com),相比于以前的系统,新版本采用了大型游戏引擎Unity 3D平台设计,实现了PC、iOS、Android系统的跨平台,从而便于用户在电脑和手机的共线学习。更大的变化,是3.0版本首次向教师开放了用于分析评估学生学习过程的后台大数据指标,包括 “学习进度与效率指标”、“记忆力指标”、“注意力指标”、“用功度指标”、“测试指标”等,一共32组指标,依靠这些数据,教师能够极其精确地评价使用者个体的全部学习行为、记忆倾向和遗忘程度,并可将其与整个班级的整体指标相比较。
如果再加上Memoryer一直以来受人推崇的人工智能认识记忆算法和人工智能虚拟教师,该系统实际上已经实现了迈尔-舍恩伯格在书中所说的大数据学习的过程:“与大数据同行的学习意味着两种迥异的学习过程。对于学生而言,他们是在一个同样也在向他们学习的体系中学习着课程。这一体系知道学生何时需要加倍依赖于概念,知道何时需要继续往下学习,还知道如何让学生在每一天中平衡“温故”和“知新”。这些学生是在伴随着大数据而学习,因为在他们所身处的系统之中,有关他们如何从事与他人和课程目标相关之事的证据,可以在分秒之中产生,而不是需要一个学期和一个学年才能出现”。
自从2012年记忆工场在世界范围内首次提出了人类神经元学习记忆的四度模型--LRRP模型(即学-记-忆-习模式)以来,记忆工场一直被人们认为是“掌握认知学习底层技术”的一家顶尖的科研机构,该机构从计算神经科学的角度,使用数学分析和计算机模拟的方法在不同水平上对神经系统进行模拟和研究。其商业化的第一个产品Memoryer神经网络单词学习记忆系统自面世以来,一直被业内所关注。
记者了解到,Memoryer学习记忆系统目前已经在北京、上海、山东、山西、陕西、内蒙、新疆等地的公立初高中学校进行了大量的对比试验和推广,所有学生均实现了“6小时掌握一学期单词”,同时在英语单词的听力、语法、默写等抗遗忘方面取得了超乎预料的理想效果,不但极大地节省了学生用于背单词的时间,而且在英语考试提分方面成绩显著。对于记忆工场的科学家们来讲,让他们兴奋的不仅仅是这个,而是在此过程中从后台获得的大量认知记忆过程的大数据,为下一步采用集体学习进化算法进一步优化记忆引擎奠定了扎实数据积累。
在人们以为大数据学习是基于一种概念一个设想的时候,记忆工场已经在这个方向上持续领跑。一个越来越清晰的双回路学习(double-loop learning)方式已经走向从最初的实践探索,向进一步成熟发展。
迈尔-舍恩伯格在《与大数据同行:学习和教育的未来》写道:“我们第一次要求自己拥有理解学生正在做什么的能力。我们能够理解在最大规模情况下学生是如何学习的,理解在任何给定的学年中数以百万计的各种数据。我们能够理解在最小规模情况下学生是如何学习的,理解每一个个体在10分钟的课程中是如何学习的,而不只是每一个个体是如何学习的。不同于旧有的调查世界和样本,我们能够连接上述两类规模——大数据是数以亿万计的小数据的汇集。”
而对于记忆工场来讲,这已经不是未来,Memoryer 3.0神经网络学习记忆系统的推出,已经实现了迈尔-舍恩伯格的上述表述,代表着我国在大数据学习应用领域已经与国际先进水平处于同一起跑点。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28