
大数据环境下政府信息化建设的思考
信息技术与经济社会的交汇融合引发了数据迅猛增长,通过对大数据进行采集、存储和关联分析,从中可以发现新知识、创造新价值,这是新一代的信息技术和服务业态。简单地说,大数据是指可以进行捕捉、管理和处理的数据集合。从技术上看,大数据分析常和云计算联系到一起,大数据与云计算密不可分。在“创新社会治理体制”的时代背景下,我们必须牢牢抓住大数据为政府治理提供的创新机遇,切实提高各级政府部门的治理能力。
我国政府信息化建设存在的障碍因素。一是机制与观念方面的因素。传统政府运作体制和机制的障碍;缺乏科学的规划与标准;政府公务员在信息化建设的思想观念方面还有待提升。二是管理因素的影响。首先是缺乏科学统一的管理工作;其次是政府多数网站建设水平不高;再次是对信息基础设施的投资与建设不足。三是政府信息化管理与信息立法方面的因素。政府信息化管理存在着复杂性;政府信息化的安全性不高;立法工作滞后。四是信息发展落后与人员素质的影响。主要表现在我国信息化水平不高;地区化水平差异很大;政府公务人员整体素质偏低。
加快政府信息化建设的对策措施。一是应确立符合工作实际的政府信息化战略思想。第一,在政府信息化的过程中,政府部门个别既得利益者必然会反对信息化工作的开展,需要对现阶段的政府机构进行重组,对服务职能进行二次分配,只有采取该种措施,才能保障各项政府信息得到顺利实施;第二,我国现有的规定,缺乏统一的技术标准,各部门分管各自的事情,为此,我们必须做好整体规划工作,制定出科学、统一的标准,避免出现各自为战的问题。这在其他国家信息化进程的推进中已经得到了充分的证实;第三,有的领导干部认为政府信息化建设将对自己既有利益格局造成冲击而产生抵触情绪。在政府推行信息化过程中,公务员是其中的关键性因素,他们必须要改变传统的思想观念,真真正正地为人民服务。二是加强组织领导,稳步推进我国政府信息化。首先,在各类因素的影响下,各个地区信息化主管部门多是以各自的“作坊方式”搞信息化建设。常见的如数据库类型、通讯协议、浏览器、服务器等都缺乏统一的标准,所以必须加强部门联通工作,为今后网上交互办公提供方便;其次,建立完善的维护和管理措施,从根本上提升政府信息服务质量。与此同时,要提高政府网站对于信息化的宣传力度,加快政府网站建设工作,政府部门应该积极主动提升自己的形象,从根本上促进自身发展;再次,解决资金问题,以收费和合作的方式偿还早期的投入和解决政府资金的不足。三是加强管理,建立和健全政府信息化法律和法规。第一,在未来的政府信息化进程中,需要为用户提供“在线服务”和“一站式”服务,因此在具体的实施过程中,必须要进行统一的规划,制定出科学的标准,只有采取该项措施,才能获得理想的建设成果;第二,政府信息化对于信息安全的要求是非常严格的,这就要求信息技术方面的整体研发必须由政府自主开发,并开发出安全性较高的信息技术手段;第三,要加紧制定出科学完善的信息法律体系,特别是在电子支付、电子签名以及电子交易上,应制定出完善的法律法规,使信息化进程顺利推进。四是加快政府信息化基础设施建设。目前我国有线电视、计算机、电信在全国范围内尚未实现“三网融合”,应尽快加强数字电视、无线互联网以及呼叫中心数据的联网融合,加快推进政府信息化基础设施工作的推进;从地域上来看,在我国东部地区和沿海地区,政府网站在信息资源和数量上都远远优于我国西部地区与欠发达地区。这就需要有差距的地方奋起直追,努力缩小差距,同时先进地区可以通过结对子的方式支援落后地区;在下一阶段,还要重视公务员的培训工作,给他们灌输新的知识,更新他们的思想观念,这不仅可以提升公务员的整体水平,也是政府信息化建设工作中需要解决的重点问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03