
大数据时代,谁能保障互联网安全
网络安全事件近期频发,网络安全警钟再次响起。互联网企业应如何保护数据安全?
5月27日下午到夜间,很多用户发现自己的支付软件无法登陆,故障2.5个小时;28日,国内最大的旅游在线预定网站也出了问题,故障时间长达12小时。两家企业均是互联网行业中的佼佼者,出现如此问题,显示出网络安全和稳定遭遇严峻挑战,在当下“互联网+”热潮中,网络安全和稳定更应该引起高度重视。随着这几年互联网、移动互联网的发展,我们每个人都实实在在的感受到了方便快捷的互联网的服务,但是这几天的事情告诉我们,在方便背后是黑色危机。
互联网与生活
对大多数人而言,用手机查看账单,看看水、煤、电缴费,看看信用卡还款情况,看看理财账户的收益,都是方便快捷的方式。而在数千里之外的一次施工,就可以让一切中断。隐私暂且不说,软件托管的资金、理财都是真金白银。网络出点问题也好,服务器有点麻烦也罢,你的钱就会成为一笔糊涂账,这是很可怕的。
同样,现在很多人都依靠网上预订行程。出行从订机票、出发车辆送机场,到落地对方城市车辆接到酒店,再到酒店住宿,返程机票,车辆接送,几乎拥有一整套服务。然而网络出现问题,很多预订了行程的客人就会出现各种问题,因为网络或者服务器的问题,机票没出,车辆没订,酒店没订,或者时间拖延,出行者就会遇到大麻烦。
我们的生活已经与互联网,移动互联网紧紧联系在了一起,互联网就像空气一样必不可少。具有行业主导地位的互联网公司对于个人的重要性不亚于银行、电信这些关系到国计民生的国企。他们出点问题,就会是社会性的大问题。
如果用一句话来总结:此次事件损失是惨重的,教训是深刻的。如何对此类事件有所防范,成为各大互联网企业与用户共同面对的问题。有个生僻词从今天开始就会成为热门词汇—灾备。
什么是灾备?
一般来说,灾备可以分为数据级、应用级和业务级三个级别,可能大多数人对这三种级别的灾备都不是很了解,那么下面我们就来具体的了解一下这三种灾备。
数据级灾备主要关注的就是数据,就是在灾难发生之后,可以确保数据不受到损坏。对于级别较低的数据级灾备来说,可以将需要备份的数据通过人工的方式保存到异地实现。如将备份的磁带(盘或光盘)定时运送到异地保存就是方法之一。而较高级的数据灾备方案则依靠基于网络的数据复制工具,实现生产中心不同备份设备之间或是生产中心与灾备中心之间的异步/同步的数据传输,如采用基于磁盘阵列的数据复制功能。
应用级灾备是建立在数据级灾备的基础上的,对应用系统进行复制,也就是在异地灾备中心再构建一套应用支撑系统。支撑系统包括数据备份系统、备用数据处理系统、备用网络系统等部分。应用级灾备能提供应用系统接管能力,即在生产中心发生故障的情况下,灾备中心便能够接管应用,从而尽量减少系统停机时间,提高业务连续性。
业务级灾备是最高级别的灾备系统。它包括非IT系统,所以当发生大的灾难时,用户的办公场所可能会被损坏,用户除了需要原来的数据以外,还需要工作人员在一个备份的工作场所能够正常地开展业务。
金融业的信息系统标准一直有明确的监管要求,而且严于其他行业。我国金融行业标准中的《银行业信息系统灾难恢复管理规范》对灾难分级、恢复时间有详细规定。中国银监会印发的《商业银行数据中心监管指引》也已经明确,总资产规模一千亿元人民币以上且跨省设立分支机构的法人商业银行,以及省级农村信用联合社,应设立异地模式灾备中心。
选择具有灾备系统的互联网公司
据记者采访的多位网络安全技术专家介绍,目前,不少普通的互联网企业并没有灾难备份,对用户而言,选择具有灾备系统的互联网公司显得尤为重要。
江淮云信易通公司则表示,通过云计算技术可以低成本地实现多个数据备份及快速恢复,并进行更严格的云上权限管理。如果没有完善的数据可靠性机制保障和安全防御能力,对互联网公司而言意味着致命性打击。
据了解,信易通是一家数据公司,和中国金融电子化公司(中国人民银行软件开发中心)签订灾备协议,为中小企业制定数据灾备方案,所有的数据由中国人民银行电子化公司备份传输到北京,提供数据级和业务级的灾备,安全性很高。
以前,自建灾备中心往往需要建设基础设施和全部的应用系统的硬件软件,覆盖全部应用系统数据的实时数据传输,应用管理,这个建设周期很长,而且成本高、见效慢。
相比之下,信易通的云灾备中心基础设施可以共享中小金融机构灾备服务中心的机房,网络可以实时通信,网络安全设备监控设备共享,数据层面可以共享虚拟化云存储,应用层可以根据每个金融机构不同需求在平时的时候可以分配一定的计算资源、存储资源。这样对比下来,采用云灾备服务中心最明显的特点就是投入成本更少而见效更快了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03