京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“互联网+”创新路:大数据转化为交管战斗力
全国公安交警系统大数据支撑公路交通安全防控体系建设现场会近日在贵州省贵阳市召开,来自公安部交管局,北京等16个省、自治区、直辖市交警总队以及江苏南京等6个城市交警支队的60余人参加会议。
会上,贵州交警总队立足省情,以大数据引领公路防控体系建设,用“互联网+”思维打造数据铁笼,探寻出有别于东部、不同于西部其他省份、具有贵州特色公安交通管理发展新路的做法,受到与会代表的肯定。
公安部交管局副局长王金彪说:“贵州交警总队积极推动‘互联网+’公路交通安全防控体系建设并取得了阶段性成效,‘贵州经验’代表了全国公安交通管理工作发展的正确方向,值得全国各省、自治区、直辖市公安交警部门学习借鉴。”
天网工程实现跨界共融
曾经欠开发、欠发达的贵州,目前已步入汽车社会。庞大的驾驶人群体和机动车保有量,迅猛增长的通车里程,以及公安交通管理海量数据的存储、管理、分析、挖掘和应用,对贵州公安交通管理工作提出全新挑战。
贵州吸取国内成熟的阿里云计算技术,采取租用电信机房和设备的方式,搭建了由619台服务器、46台网络交换机、12PB总存储组成,总规模达到提供1万个核运算能力、计算能力相当于10台银河巨型计算机的警务云平台。
以云平台为支撑,交管部门构建了汇聚公安内外部数据的大数据资源池,汇集公安内部各警种和外部安监、交通、保险、广电等社会资源。对内,开放接口,与治安、刑侦、技侦、反恐等警种和科信、情报等部门共享公安信息资源;对外,与安监、交通、保险、广电等多部门共享社会信息资源,汇聚全省“天网工程”6.8万路信号和贵州路网全部监控资源。
为了实现跨警种、跨行业、跨部门的跨界共融,贵州省将原本分散的碎片化数据和“条数据”聚合成“块数据”,实现“块数据×”效应,牵引职能、职责融合式发挥,逐步推动形成道路交通管理的整体性治理格局。
管住关键少数破解难题
交通安全防控要管住关键少数,贵州省搭建道路交通安全监管综合云平台,将全省5.33万家客货运企业、62.7万名营运驾驶人,1755家公路客运、旅游客运、校车和危险品运输重点企业和3.52万台重点监管车辆,以及4341家租赁企业和3.53万台租赁车辆信息纳入监管视线。
为筑牢源头管控第一道防线,贵州省与独立第三方信用评估及信用管理机构“芝麻信用”建立重点驾驶人征信系统。目前已有371名因交通违法记满12分、酒驾、超员20%以上、超速50%以上而进入“黑名单”库的重点车辆驾驶人被企业解聘,最大限度避免了不符合要求的驾驶人进入重点车辆驾驶人领域。
结合农村道路安全基础薄弱,交通事故高发的实际,贵州省开发农村道路交通社会化管理云平台,将公路交通安全防控体系网络延伸至占全省道路总里程95.5%的农村道路。交管部门通过对人、车、路、重要时间节点等道路交通安全数据进行采集、研判、预警,向市、县、乡、村、组五级责任人推送分析结果和预警信息,着力破解农村地区交通管理“有机制、无落实,有机构、无人员,有措施、无手段,有责任、无追究”的“四有四无”难题,打造农村道路交通安全的数据铁笼。
山东省公安厅交警总队副总队长张贤艳说:“农村道路交通管理是一个薄弱环节,是在全国具有共性的问题,利用大数据创新办法、创新手段、创新方式、改革勤务模式,为我们提供了改革的思路、方法和管理框架。”
新模式织密三张防控网
贵州省不断创新道路交通管理新模式,着力织密三张防控网。贵州交警总队将重点车辆征信体系等大数据监管方式延伸至人、车、路、环境的全方位、全时空管理,创新大数据背景条件下交通安全监管模式,织密上游静态防控网。
针对当前防控体系建设存在的执法站布点不科学、执法站建设进度慢、执法站基础保障不到位等问题,交管部门在已规划的157个执法站基础上,进一步强化以视频监控防控网、路面执法防控网、区域警务协作网为骨架的防控体系建设,织密中游动态防控网。
交通安全防护设施严重缺乏是贵州面临的突出问题。交管部门将县、乡两级政府工作开展情况,“两站(乡镇交管站、交通安全劝导服务站)”“两员(专职交通管理员、交通安全义务协管员)”工作落实情况,“生命防护工程”推进情况全部纳入平台监管,形成政府主导下管理信息共享、安全责任共担、社会力量共治的农村道路交通安全管理新格局,织密下游基础防控网。
广东省广州市公安局交警支队支队长欧日文说:“我们要把‘贵州经验’带回广州,将大数据应用上升到更高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31