京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:信息化作战的制胜法宝
大数据时代正向我们走来,大数据的广泛运用正在深刻影响和改变着人们的生产、生活和思维方式。目前,大数据在军事领域也得到广泛运用,各国都在积极推进有关大数据的军事研究开发项目。那么,大数据究竟在未来作战中会发挥什么作用?有哪些军事应用前景?将带来哪些军事变革?值得我们深入思考和探索。
让核心目标显形
美国的网络监控无处不在,只要你通过搜索引擎键入敏感词汇,很快就会被监视和锁定。有时一些看似并不相关的寻常词汇,也可能被情报人员盯上。
从看似不相关中找出相关性,这就是大数据的魅力。未来信息化战争中,“目标中心战”将是一种主要战法,此战法成功的关键又取决于对敌核心“目标”自身的识别、定位与锁定上,这也是困扰指挥员的难题。运用大数据有可能让未来战场更加透明,从而使这个难题迎刃而解。根据大数据的分析原理,每个目标,无论个人还是军事单位,都是数据的制造者,也都处在数据的包围之中。一旦成为大数据的锁定目标,就将“在劫难逃”。即使是深居简出的本·拉登,自认为与信息社会高度“绝缘”,但因周围的人不断产生数据信息,他也只能无所遁形了。
实现战争决策最优
在大数据时代,通过对海量数据信息进行分析挖掘,更加智能的计算机系统将可以辅助指挥员作出决策。基于大数据的计算机不仅能提供查询搜索功能,还将具备一定的“思考”能力,能够顺应形势变化搜集各种数据,筛选出有价值的信息,给出解决问题的建议。战时指挥员的工作,将变得越来越高效,只需从“大数据”给出的所有意见建议当中优选出最佳方案即可。
在大数据支持下,一些无人作战平台,如无人机、无人舰艇、作战机器人等,也将具有一定的“自我”决策能力。这些作战平台可以在计算机系统操控下,实现自主攻防。尤其是在与指挥网络失去联系而无法接收指令时,作战平台将可依托基于大数据的自身“智能”,迅速启动应急机制,自动识别判断目标性质、威胁等级,自主决定进行攻击或者启动自我毁灭程序。
私人定制——
使心理战的利箭更精准
楚汉相争,楚军在垓下为汉军所围。当夜,四面汉军皆唱楚歌,楚军军心震动,以为汉已尽得楚地、楚人,史称“四面楚歌”。这是一个典型的心理战战例。面对项羽麾下勇猛而著称的军队,汉军通过用楚地的歌曲唤起楚军的思乡之情,使其精神上濒临瓦解,无心恋战。
在大数据环境中,“数据脚印”可以清晰地还原每个人的心声。人们在信息空间当中的浏览、点击、搜索、购物、下载、上传、通话、微信、微博……所有的行为都有记录,最终都将会形成数据。于是你的性格特点、兴趣爱好等个性化特征都将不再是“隐私”。据此,心战专家就能够制作出现实版的“楚歌”,可以根据每个官兵个人的喜好和心理特点进行“私人定制”,采取更有针对性的措施,影响干预你的情绪和行为。这一切都可以在私人的网络空间中完成,比广播、传单等传统心战手段更具隐蔽性和诱惑性。
智能保障“送货上门”
美国有一家零售商,通过分析所有女性客户购买记录,制作了“怀孕预测指数”,并据此准确判断出哪位客户是孕妇,哪一天是她的预产期。可以提前将孕妇装、婴儿床等商品的优惠券寄给客户,并根据婴儿的成长周期定期向客户推介商品。凭借这项大数据技术,这家零售商开展的“送货上门”服务深受客户欢迎,商品销售额实现了快速增长。
供需矛盾在未来战场上将更加突出。大数据精准的预见功能使超前保障成为可能,这给战场保障带来了新的革命性机会。例如创建基于大数据的保障模式,让担负保障任务的部队,对平时与战时各个阶段、各种情况下的消耗、战损进行分析挖掘,就能够准确地预测出部队需求,合理调配使用各类保障资源,实现近乎智能化的精确保障。
变废为宝——
打响“数据保卫战”
“棱镜门”事件昭示人们,一场以大数据为核心的“超级情报战”已经打响,信息空间成为战场,数据成为战斗力的来源。以往情报特工、间谍都致力于机密信息的获取,这种情报战像宝库夺宝,关键在于破译密码,取得宝库的钥匙。基于大数据的情报战则转向了公共信息,利用大数据强大的分析功能,从看似寻常的数据中找出关系国家、军队重大决策的情报,像是垃圾堆里淘宝。因此,数据将越来越成为制胜的关键,谁能够控制和利用更多有价值的数据,谁就能够掌握作战的主动权,也就拥有更多更大的胜算。
大数据情报战无所不在、无孔不入,“数据保卫战”已经打响。一些现在看似不起眼或无用的数据,随着数据挖掘技术的创新,将来可能会变得至关重要。未来数据安全,必将上升至国家安全层面加以重视,必须从现在开始构筑好数据安全的顶级防护层。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29