
大数据分析仅为赢得新客户?推动整合转型是关键
作为全球发展最快的大数据市场,虽然超过四分之三的大中华区企业在一年内实现了大数据的投资回报,显示了高于全球的投资信心,但是更多的中国企业更注重利用大数据分析来赢得新客户而不是创造更好的客户体验,同时,中国企业普遍在利用大数据推动数字和流程整合转型方面落后于全球整体水平。这是IBM近日发布的《分析:速度的优势》白皮书的调查结果。该白皮书就企业在分析生命周期的三个关键阶段提出了快速将数据转变为洞察并驱动行动的建议,帮助企业在竞争中保持领先优势。
IBM大中华区全球企业咨询服务部高级合伙人兼副总裁StevenDavidson表示:“随着大数据应用的不断深入,新的发展与变化已经产生。通过此次《分析:速度的优势》白皮书的发布,我们可以看到,速度优势对企业在竞争取胜至关重要。一部分企业正通过速度驱动的数据和分析实现差异化发展,对业务绩效和竞争地位产生了显著的影响。这一趋势对于全球企业高管,尤其是那些致力于利用创新技术推动自身发展的中国企业的领导尤为重要。IBM一直致力于与中国企业紧密合作,分享自身丰富的大数据分析洞察与资源,共同携手推动业务的创新与增长。”
四大变化引领全球大数据应用发展
作为IBM第六次全球数据分析调研,此次调研对象包括60多个国家中超过1,000位业务和IT高管,其中也包括大中华区企业。IBM 2014年全球分析调研揭示了影响快速发展的数字市场的四个重大变化:
变化一:绝大多数企业目前在一年内实现了大数据投资的回报。
变化二:以客户为中心仍是分析活动的主要目的,但企业越来越多地将注意力集中于利用大数据应对运营挑战。
变化三:通过将数字化能力集成到业务流程中实现企业转型。
变化四:大数据的价值推动力从数量转变为速度。
如何在各个关键阶段保持领先
利用大数据分析,成为领跑者的关键是什么?IBM大中华区全球企业咨询服务部合伙人、大数据和分析负责人王明德这样谈到:“在研究中我们特别针对领跑者做了一些深入分析,领跑者并不是在某一两点上做的非常好,而是在分析的生命周期的各个阶段都非常出色。”
IBM大中华区全球企业咨询服务部合伙人、大数据和分析负责人王明德
IBM把分析生命周期分为标准的三个阶段:获取阶段、分析阶段、行动阶段。王明德强调说,基于IBM公司掌握的关于大数据分析的技能和知识,也基于IBM对中国企业以往提供服务与合作获得的知识,IBM能够帮助中国企业更快地成为或赶上领跑者。
同时,王明德在采访中也着重谈到了此次发布的白皮书,对中国企业在这个阶段应该抓住哪些重点给出的不同建议。在分析生命周期的第一阶段,即获取阶段,企业要获取数据、管理数据、处理数据。IBM给出的第一个建议就是开发出能够支持数据多样性的解决方案。第二个建议则是把这些数据真正快速的提供给企业里需要这些数据的人。第三个建议是不要忘记数据治理概念的重要性。
当企业进入到分析生命周期的第二阶段,即分析阶段,企业已经可以从数据中获得洞察,这样可以专注于某个业务领域,通过洞察提升这个业务领域的业务效果。因此,在这个阶段IBM给出的第一个建议是,从外部获得这样的洞察,对客户有更好地了解。其次,要全面地使用更深层的分析。在传统的数据库中分析主要集中在描述性和诊断性的分析。而现在的大数据平台,有强大的分析软件和分析引擎,因此应该更多地做预测性、指定性的分析。
分析生命周期的第三阶段,即基于数据分析作出快速的行动。IBM特别强调第一步整合数字和流程的转型做法很关键。这一阶段要尽可能使企业全部数字化,能够提供数字平台,可以处理目前所有的数字形式的要求。其次,怎么使这些分析和数据能够供自己的员工和高管使用。比如推出一些符合现在需求的做法,通过移动设备来使用。IBM给出的第三个建议,一定要专注于以能够带来最多的业务回报和成果的方式来作为开始行动的起点。
从IBM此次发布的《分析:速度的优势》白皮书,其核心内容则是领跑者数据分析驱动实践,速度成为了关键。该白皮书指出要跟上当前的发展速度,企业需要全面地采用分析技术。基于企业现阶段分析能力,白皮书将企业分为四个组别:领跑者、慢跑者、参与者和旁观者。占10%的领跑者最有能力满足速度需求,并创造了巨大的商业价值。超过一半的领跑者都表示分析对业务表现和收入产生了显著影响并且使他们获得了显著的竞争优势。但大中华区在分析对业务、收入和竞争力方面产生影响的表现仍与全球领跑者存在着较大差距。为了创造业务价值,中国企业需要仿效领跑者,并且加快速度管理数据和分析,并依据数据洞察采取行动。
大数据在中国落地有声
尽管从整体上而言,中国企业在大数据应用方面的表现与全球领跑者存在差距,但是也不乏成功者和领先者。
IBM大中华区全球咨询服务部副合伙人,大数据与分析中国区负责人谢国忠在采访中也谈到:“最近两年IBM和中国企业有很多合作,我们已经做了很多相关的大数据的项目实践。”谢国忠在白皮书发表之际展示了IBM在十三个重点领域的应用场景,同时也着重介绍了诸如上汽集团等企业大数据应用的情况。
IBM大中华区全球咨询服务部副合伙人,大数据与分析中国区负责人谢国忠
比如,IBM帮助上汽集团成功打造中国汽车市场首个O2O电子商务平台——车享网。该平台将基于线上客户数据,有效判断客户潜在需求,提高运营分析效率,为客户提供及时的、个性化的服务与信息。通过全面的客户洞察做到精细化营销,车享网平台将大幅提升会员管理水平。通过数据分析提升汽车消费者全生命周期服务能力,真正做到高品质的客户体验。目前该公司从访客变成线下的成交客户,提升了1%。1%的提升很不简单,这需要庞大的数据量,而这个1%所带来的总订单量则提升了11.3%,客户流失率降低了3%。
在新互联网时代下,随着大数据、云计算、社交及移动趋势的快速崛起,IBM正在构建自身全新的服务能力。在大数据应用领域,IBM一直引领着创新和发展,并不断融合自身在各行业与全球化发展中的经验,不断帮助中国客户紧抓新时代下的发展机遇,以稳健的步伐成长为全球企业的领导者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03