
中国的大数据该如何腾飞
大数据,首先意味着海量数据,并且彻底改变了数据利用的理念。分析所可能产生的全部数据成为可能,这必然使得人们改变过去沿用多时的抽样分析方法,而要善于快速乃至实时对海量(全部)数据作出反应。过去的抽样分析会带来样本分布的偏差,从而使得有限数据得出的结论发生扭曲;而大数据时代的数据挖掘分析,并不意味着分析难度的降低,相反可能更高。
当然,在大数据时代,通常意义上也不需要分析全部数据。“大数据时代的预言家”、牛津大学网络学院互联网研究所治理与监管专业教授维克托·迈尔-舍恩伯格就曾指出,大数据用概率说话,海量数据中将被提取出部分的有效数据,只要由此实现的数据挖掘精确度高于过去的抽样分析。分析全部数据在技术上是可能的,在成本上是不可行的,更何况当下的时间成本常常要比经济成本更重要。
大数据从一个带有前瞻性的新型概念,到推动计算机、互联网等信息产业以及传统产业、公共管理等诸多方面实现重大变化,为时并不久远。也就是说,大数据的发展速度相当惊人。遗憾的是,很多人对大数据的理解仍然停留在对以往若干个新锐创业、互联网概念的理解层次上,将大数据带来的创新、发展机遇看成是“忽悠”,对大数据时代正在发生的行业和社会关系变化视而不见。而在宏观层面,国家工信部官员也曾指出,“我国大数据产业同样面临着人才匮乏、数据资源不够丰富、数据开放程度较低、相关的法律法规不完善等问题”。
从我们每个人更可能扮演的消费者、上班族、数字产品使用者等角色来看,大数据也已经深刻的改变了我们的消费、社交和工作,其作用还将进一步提升。套用一句热门的话,你可以不关心大数据,大数据却要关心你。任何技术使用都具有两面性,在带给人以独特便利的同时,会对既有的社会关系及人的习惯造成冲击,甚至损害使用者或他人的权益。大数据建立在数据挖掘与分析基础上,由此实现预测,将有助于公共管理部门和企业对普通人实施更严密的控制。美国已经有社交网站为企业预测员工的离职倾向,这一指数较高的员工将无法获得提升;金融机构通过大数据技术,得出客户群体消费倾向与不良记录的相关性指数,一方面诱导用户更为便利的进行更多冲动消费,另一方面则对部分用户设置更严格的贷款、信用卡申请批准限制;保险公司会根据客户的医疗、消费数据,对其可能的死亡期进行预判,从而拒绝部分用户的投保购买。
《大数据在中国》书中分别以大数据对于创业者而言的创业创新机会、大数据对于政府部门提出的加快立法和推动公共管理转型的压力、大数据对于互联网巨头重新划分行业布局的重要机遇、大数据对于科技领域带来的激活各相关领域连带式创新的契机、大数据为消费者获得更多应用便利及隐私泄露威胁等各方面视角,对大数据问题进行了全面叙述。叙述中,书作者汇集了国内外诸多大数据研究分析著作的精华观点,并结合中国大数据发展的实际,向中国读者普及大数据概念。
值得一提的是,这本书有意识的分别选取了美国和我国大数据产业的多个案例,归纳了大数据发展的共性规律,分析指出了中国大数据产业落后于美国的主要痼疾,并发出了加快发展中国大数据产业、加快大数据立法和相关公共管理模式转型、加强大数据时代隐私安全机制建设和公民理念培育等呼吁。书作者特别强调,在蓬勃发展的互联网时代,大数据可以帮助政府、企业等各类组织摆脱旧的管理模式,走向更为光明的未来,但要实现这一点,当前政府就必须抓住大数据发展的基础设施、产业链、人才、技术和立法五大关键要素。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29