京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据安全分析不容忽视的三个真相
大数据分析工具与分布式数据库确实蕴藏着巨大潜力,有可能改变安全监控与调查工作的执行方式。然而这些与汇总安全数据并加速分析流程的创新途径也会带来很多不必要的麻烦。
这不仅是因为比起供应商们的卖力宣传,这些工具与服务其实很难被纳入业务流程当中,而且它们还会给不加批判使用这类方案的安全部门带来大量潜在风险。这一结论来自Rapid7公司首席研究官兼安全研究员H.D.Moore本周早些时候在本届于波士顿举行的联合国安全大会上的发言。
根据Moore的观点,大数据很可能给“攻击者与防御者双方的根本机制带来变化”。而且安全部门尤其需要从以下三个角度理解Moore在本届大会上的发言。
1. 大数据绝非魔法
根据Moore的论断,如今以大数据为核心的炒作之声甚嚣尘上,这一术语已经成为所有类型安全分析工具的必备宣传口号。安全业界几乎把它作为一句咒语来膜拜,似乎只要有大数据存在,安全性的美梦就能最终实现。
“人们往往认为如果我们把所有数据都安置在一起,就能魔术般地实现安全性诉求。这当然只是种误解,”他指出。“在海量数据面前,我们可以通过深入钻研找到有价值的内容,从而获得显著的安全提升效果,但整个分析过程绝不可能手到擒来。”
如果没有专门的管理者打理执行流程、编写正确的查询指令并询问符合实际的安全问题,大数据其实根本无法带来什么实质性效果。“因此,请注意您的投资方向,并确保在向某款数据分析工具投资之前、至少已经有一家其它厂商也向其投过资。再有,我们的投资数额不要超过对方,”他指出。
2. 把所有鸡蛋放在同一个摇摇欲坠的篮子当中
更令Moore感到忧心的是,虽然大数据安全分析工具层出不穷(包括自主研发与第三方提供),但这些工具本身的安全性其实并没有保障。
“我们看到众多以大数据工具包为核心创造出的方案——例如Mongo以及Cassandra——但这些工具中往往并没有加入安全机制,”他表示。举例来说,MongoDB在默认状态下并不支持SSL,而且与更加成熟的传统数据库相比、其安全级别还远远达不到要求、也没有提供类似的管理工具。“这实际上非常可怕,在默认情况下这些工具毫无安全性可言,但它们如今却已经被打包出售并充当大数据服务的后端。”
此同时,企业则将大量安全元数据、日志文件等等聚合在一起从而实现大规模分析,这种做法进一步加深了安全风险出现的可能性。
“企业正竭尽全力将所有能够获取到的数据集中起来保存在同一位置,”他解释道。“对于恶意人士来说,这种集中式存储方式无疑是最唾手可得的财富宝库。面对过去那些可怕的密码泄露事故,每位管理者都会感到不寒而慄。然而与未来可能由于大数据汇总所引发的TB级别数据泄露相比,过去那些事故简直不算什么。”
企业放置敏感安全数据的篮子不仅太大,而且放得也不太稳,这一切当然会令人忧心忡忡。
3. 依平均概率推算,分析服务供应商的违规事故即将出现
在多数情况下,鸡蛋篮子的倾覆普遍基于外部原因。随着大数据安全分析服务供应商逐步加入战团,企业如果不认真审查自己的供应商、其面临的风险状况将持续恶化,Moore警告称。
“安全服务供应商所处理的数据总量以及数据类型非常关键,”Moore进一步解释称。“大家会发现包括电话通话日志(谁打给谁、用户何时登陆等)以及其它敏感信息在内的数据都会被纳入到日志文件当中来。”
Moore认为,随着服务供应商在市场价值上的逐步拓展,他们使用的相关产品中不安全因素也将持续增加。供应商手中掌握的重要客户数据清单一天天膨胀,而这最终会导致大规模数据泄露事故——这一天已经不会很远。
“明年几乎必须会出现大问题,我们很可能看到某家大型分析服务供应商——无论是安全性、日志数据还是其它业务——遭遇违规事故,”他指出。“这与个人意见无关,而只是平均概率带来的必然结果。如今有很多家伙正努力打造产品与服务,虽然我们并不了解他们的具体执行流程,但数据泄露的出现将只是时间问题。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06