京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的本质是虚拟中介,和实体经济相生相伴
互联网发展的一个重要的特点,就是很多线下的业务被放在了线上,互联网本身具有去载体化的天然特性,正是因为有这样的特性,所以数据沉淀就显得特别重要,若是没有这个数据沉淀的优势,互联网去载体化就不可能实现。
以往传统的线下业务其实也沉淀了大量的数据,只不过这种数据的负载形式是物理的,传统的统计形式更多的依赖人工,所以这些沉淀的数据一直在沉睡而没有被唤醒,因为人工的方式根本没法做到。互联网充当了唤醒这座数据金矿的重要角色,使得人类第一次对数据的效用重视起来,所以大数据的概念风靡当下,不能不说这是互联网带来的意外之喜。
互联网将传统线下业务搬到了线上,于是这种大数据的形式就凸现出来,因为既然互联网具有去中介化的天然特性,那么这种中介化的价值信息就附着在海量的数据中——除了数据,互联网的价值链就显得没那么有价值了,所以从某种程度上说,互联网时代的中介化,就是沉淀的海量数据形式。这和传统的物理中介当然是两个不同的概念,只不过互联网时代,很多传统的物理中介都受到了虚拟中介的冲击。本质上,这只是中介身份的一种转换,而不是物理中介被消灭了。
例如,银行、证券、交易所等金融机构都是物理中介,其业务所积累起来的数据非常可观,当这些数据被海量的搬到线上的时候,我们并不能简单的认为这些金融机构被消灭了,而应该认识到,这些金融机构的身份,是以搬到了线上的海量数据为新的虚拟中介形式的,物理中介反而成了虚拟中介的生产源。这些生产源的本质属性是不变的,例如,金融方面,其股权、债券、信托等金融核心功能不变,其所涵盖的契约也是不变的,所面临的金融风险、所面对的监管的基础都是不变的,这种本质属性的固定,并没有在互联网时代因互联网的迅猛发展而发生改变。当我们在分析互联网对传统行业的冲击时,往往用去中介化来描述互联网对传统行业的冲撞,但是我们应该认识到,这种去中介化,并不是消灭了物理中介,而是摆脱了物理中介,实现了和以大数据为依托所形成的虚拟中介的联姻。
所以,大数据的形式其实是一种互联网时代的虚拟中介,它是从传统的物理中介中衍生出来的,从此,市场的生态环境发生了变化:一种线上的虚拟中介,一种线下的物理中介。整个市场被重新构造起来,线上线下两种生态共同支撑着当前的互联网时代走向一个较为繁荣的阶段。
迈尔·舍恩伯格(《大数据时代》一书的作者)认为,大数据的一个重要特点,就是事物之间具有相关性,而因果性倒是处于其次。
其实,这种观点也不新鲜,因为在统计学上,要证明两个事物之间具有因果性,前提条件是这两种事物要具有一定的关联性,即,事物之间的关联性是求证它们因果性的必要条件。所以在某种程度上,舍恩伯格这种观点是将事物之间的相关性和因果性分开看了。从前面的分析我们可以得知,海量的数据并不会无缘无故的产生,线上的大数据中介是传统的物理中介衍生出来的,可以说没有线下的物理中介经过产业链的整合,从而将这些数据整合到线上,那么线上的虚拟中介是不会产生的,所以,数据之间绝对不仅仅是只有联系性那么简单,数据之间的因果性才最终指导着企业如何经营的极为重要的因素。
大数据的形式作为新型的中介形式,本质上还是伴随着互联网的迅猛发展而产生的,这是一种有别于传统中介形式的新型中介,并不能独立于实体经济而孤立存在,没有实体经济的最终繁荣,互联网只能呈现出较为繁荣的假象,而最终会变成没有根基的浮萍,所以,只有线上线下生态同步发展,或才是一个市场较为成熟的表现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04