京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代: 大数据时代的商业创新
大数据不是一个新的现象,或者是数据根本就不是一个新的现象。上世纪1920年代,在美国出现了所谓的直销业,大量的百货公司开始进行所谓的直销,给每家每户送目录,这就是开始采集用户的数据来进行个性化的营销。到1982年,美国的一些航空公司出现了客户忠诚项目,航空公司开始有大量的客户交易行为数据。
商业创新涉及产品整个价值链
从商业创新的角度来看,更多的是围绕着管理现有和潜在顾客的全生命周期,在你购买之前、购买之后,全媒体、全渠道。无论是pc、手机,还是线下o2o,所有跟这个企业的社会互动,把这些数据收集起来,就能做出一个很好的预测。而且传统的数据营销,产品投放市场以后,只是单纯地做营销。现在,商业的创新是更多延伸到产品整个价值链的上下游商业的创新。
大数据时代,商业创新的市场趋势和一些商业创新出现新的范式。
我们现在处于一个社会化互联网时代,早就过了门户时代。现在的互联网是一个社会化的互联网,其内容主要是用户提供的,用户的内容都可以自己生成,而不是由企业生成的。
互联网时代,最主要是两种形式:一种叫口碑,就是“言”;另外一种是观察模仿,或者叫观察学习,就是“行”。
大数据时代的商业创新,既然是围绕着社会互动展开的,就有一个很重要的特点:社会化互联网使社会互动成为企业的一个重要的战略变量,无论是口碑还是观察模仿,在传统的线下,企业没有办法直接操控。中国有一句谚语:酒香不怕巷子深,但现在不一样,现在很重要的一个特点是,商业创新要看各种各样的新的商业模式,很多完全是围绕这个展开的。
口碑:
新的营销决策变量
从过去这些年的研究中,可以发现的一些有关口碑的例子。比如亚马逊1995年最早推出消费者的口碑,第一次把消费者的口碑当做企业操控的变量,它可以决定提供还是不提供。这里,我们要思考口碑给企业带来了什么样的影响,功能是什么。
观察学习也是这样,也是亚马逊最早开始做的。我们在线下排队的时候,亚马逊很轻易地放到网站上,后台可以统计出看过某款产品的客户,最终有多少人购买这款产品。
我们看到100个顾客从餐馆门前走过,最终有多少人进了这个餐馆,多少人进了对面的餐馆,这就是在现实生活中大家去吃饭时关心的数据。企业仍然能够把它当做直接操控的战略变量,这就改变了很多商业的游戏规则。
另外,社会互动的类型成为企业直接管理的变量。其实,另外一种社会互动的异质性本身或者同质性本身,也成为企业管理战略的变量,这是我们要在另外一篇文章里面讨论的问题。
商业创新:
立足社会互动的战略管理
商业创新是围绕着利用社会互动来影响产品投放市场以后的战略吗?其实远远不止,社会互动还可以影响到整个价值链的上下游。企业用消费者社会的互动来做新产品的测试,更重要的是新产品测试的时候就在做营销了。
身处大数据时代,商业创新一个很重要的立足点就是怎么来进行社会互动的战略管理。社会互动的异质性取决于社会网络关系,社会互动不同的类型不仅可以影响企业做决策,还受现在移动互联网o2o的影响,它也是一个战略变量。
其实在大数据时代,你仍然可以做社会互动。美国芝加哥的一家公司是卖t恤衫的,任何一个人都可以把自己设计的t恤衫上传到这个网站,得票高的由这个网站生产。这样来做新产品开发,同时也是在做新产品的测试,也是在做新产品的营销。什么意思呢?在大数据时代,如果你要基于社会互动战略管理的时候,我们过去商业上决策的流程是一种串行。现在是一个并行,我在做营销的时候,我就应该在做研发,我在做研发的时候,我应该就在做营销,不应该把它割裂开来。
社会互动:
企业可操控的战略变量
传统的市场主体企业创造价值,顾客消费价值。是谁创造价值,谁消费价值呢?实际上是消费者在创造价值,企业在消费价值。而传统市场的功能是在做价值的交换和资源的配置,但是价值的交换前提是:谁是价值的创造者,谁是价值的消费者非常清晰,而现在并不清晰,现在市场最主要的功能更多的是在做一种资源的整合和价值的共创。市场的主要调节机制不仅是供求价格,更多是社会互动。
人类社会一直有社会互动,社会互动现在成为市场调节的主要机制?一个很重要的条件是,价格之所以成为调解价值,第一是价格可观测、可度量,第二是价格可调控。
由于互联网、大数据技术,社会互动成为企业可以操控的战略变量。大数据技术可以把用户在微博、微信上互动的内容分析提取出来,知道什么价值有用,什么价值没用,这就是大数据时代对商业创新的影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27