
企业如何推进数据驱动文化?数据分析工具并非关键
易于使用的数据分析工具将会在企业内部大量使用,对此,分析软件厂商们非常看好。仅仅在过去数月里,我就收到大量新闻稿,都说产品可以“将分析大众化”,主张让数据分析工具变得更加简单,从而解决企业分析工具使用率低的问题。
但是,对于我来说,企业如何推进数据驱动文化,数据分析工具并非关键,真正的症结在于企业的内部文化。
人们更喜欢也更有可能使用简单的工具,厂商的这种观点并不新鲜——而且这是显而易见的。现在推出的工具绝对比十年或是十五年前的那些古董要更加易用。但,工具变得更加简单,使用率却并没有明显提升。
我经常从分析专家们那里听到一句话:在一家企业的所有劳动力中,数据(WiFi广告与WiFi营销)驱动工具使用率的通常顶多也就20%左右。无论是IT部门使用,还是分析团队将工具交付给员工使用,情况基本类似。
数据分析工具也有拦路虎 你能否突破20%使用率的天花板?
有确凿的证据可以证实这一数字,在某些情况下,20%实际上还有些高估。在最近来自Dresner咨询服务公司的一份报告《Wisdom of Crowds BI Market Study》(大众智慧BI市场研究)中,近40%的受访公司说他们公司中不到10%的员工使用数据分析工具,超过20%的受访者表示这一数字在11%到20%之间,仅有不到25%的受访者表示这一数字曾超过40%。
特别值得注意的是,这些数字是低于前些年的。这就意味着即使随着工具不可否认地变得更加易用,它们在一线员工中也不没有更高的使用率。
一线员工为何拒绝使用新型分析工具?原因可能有很多。首先,人们不愿意改变他们做事的方式。同时,在没有看到适当理由的情况下,人们是不会接受新方法的。例如,你如果把一个炫酷、全新、自助的数据分析工具摆在一名营销经理面前,估计她不会去使用。因为是否要使用这个分析工具,取决于分析团队能不能解释清楚,这个分析工具将会如何帮助她更有效地区分客户,或是通过测试比较,证明这个分析工具是最行之有效的。
企业如何塑造数据驱动文化?管理层至关重要
这不仅仅是企业培训教育的问题,它还取决于管理人员需要灌输这样的数据驱动文化,显然,这和数据分析工具没有太多关系。员工们需要知道,数据使用的好坏程度将直接影响自身在企业内部的权重,这样他们就会越来越重视数据驱动化。
我接触过一些数据驱动文化较成功的企业,听到过这样的事情:开会时,如果发言没有数据支持,这样的人没有太多的话语权。管理层会监督谁使用了数据分析工具,并把这作为工作业绩考核的一项指标。管理人员身体力行,让数据说话,而非跟着感觉走。这一过程是需要管理层加以引导的。
可能有些企业领导认为,通过轻松安装一款易用的数据分析工具,企业员工就会突然都变为数据驱动。这样的想法是不切实际的。无论工具多么简单友好,它们本身并无法将那些在日常工作中不使用数据的员工进行重塑改造。对于那些寻求突破20%上限的企业来说,了解为什么数据驱动文化无法推行,如何才能够有效让数据驱动文化落地,这才是重中之重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18