
大数据7种商业模式
移动互联网时代,大数据爆发后带来大量流量,运营商将经营重心从话务量转向流量。然而一方面面临着数据流的附加值被互联网公司赚走,沦为管道化的尴尬;另一方面运营商无差异的“管道”运营正在导致运营商间的价格竞争,降低盈利能力;而为了促进用户使用数据业务而推出的一系列包含较高流量的套餐。除此之外,大数据还有那些商业模式呢?
移动互联网时代,大数据爆发后带来大量流量,运营商将经营重心从话务量转向流量。然而一方面面临着数据流的附加值被互联网公司赚走,沦为管道化的尴尬;另一方面运营商无差异的“管道”运营正在导致运营商间的价格竞争,降低盈利能力;而为了促进用户使用数据业务而推出的一系列包含较高流量的套餐,再加上QQ等应用长期“空挂”在线, 低效流量占据“管道”的大量资源,出现了客户感知低、收入流量增长不平衡的局面。
但从另一个角度看,大流量中包含的海量数据,也是产业链上其他环节望尘莫及的。如果能再加上高效的信息分析能力,将帮助运营商在日益激烈的市场竞争中准确决策,深度挖掘数据的价值,提高流量经营的质量。
运营商手中拥有着庞大数据。除了常规的年龄、品牌、资费、入网渠道,终端的IMEI、MAC、终端品牌、终端类型等基础信息外,互联网、移动互联网、物联网、云计算的兴起以及移动智能终端的快速普及,运营商的网络正在被更完整的用户数据。例如何时何地上网、上网的内容偏好、各种应用的驻留时间、手机支付信息等等。
在内部运营中,运营商已经从这些庞大的用户数据中,可以分析出不同用户的行为习惯和消费喜好,并应用于在精细化营销基础上。然而就流量经营而言,就这是远远不够的。就海量数据,提供高附加值的数据分析服务,将数据封装为服务,形成可对外开放、可商业化的核心能力,实现商业模式的创新,才能真正实现流量经营。
利用存储能力进行运营,满足企业和个人将面临海量信息存储的需求。具体而言,可以分为个人文件存储、针对企业用户两大类。主要是通过易于使用的API,用户方便地将各种数据对象放在云端,然后再像使用水电一般按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等等。运营商也推出了相应的服务。前者如中国移动彩云业务;后者如传统的IDC。
对中小客户来说,专门的CRM 显然大而贵。飞信充当了不少小商家的初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发发新产品预告、特价销售通知,完成售前售后服务等等。运营商可以在此基础上,推出基于数据分析后的客户关系管理平台,按行业分类,针对不同的客户采取不同的促销活动和服务方式,提供更好和更有针对性的服务,再提供线上支付通道打通,形成闭环,就是一个特别实用和便捷的客户关系管理系统。
将用户数据,加以运用成熟的运营分析技术,有效改善企业的数据资源利用能力,让企业的决策更为准确,从而提高整体运营效率。如,某店卖牛奶,通过数据分析,知道在本店买了牛奶以后常常会再去另一店买包子,人数还不少。那么这店就可以考虑在家店可以与包子店合作;或是直接在店里出售包子。
“垃圾短信”是为客户所最为厌烦的。之所以为垃圾,不过是因为收到的人并不需要。而被人认为成垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,就成了有价值的信息。比如在日本麦当劳,用户在手机上下载优惠券,去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
运营商所具有全程全网、本地化优势,会使得运营商所提供的平台上,可以最大程度覆盖本地服务、娱乐、教育和医疗等数据。典型的应用是中国移动“无线城市”。以“二维码 账号体系 LBS 支付 关系链”的闭环体系推动,带给本地化数据集市平台多元化的盈利模式。
数据检索是一个并不新鲜的应用,然而随着大数据时代的到来,实时性、全范围检索的需求也就变得越来越强烈。商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动之“盘古搜索”。
对运营商来说,数据分析对政府服务市场上更是前景巨大。美国已经使用大数据技术对历史性逮捕模式、发薪日、体育项目、降雨天气和假日等变量进行分析,从而优化警力配置。在中国,运营商也可以在交通、应对突发灾害、维稳等工作范围中使大数据技术发挥更大的作用.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10