
大数据时代:发现问题并提出建设性建议
在当前的大数据时代下,尽管大数据在技术层面的应用可以无限广阔,但由于合理利用规则的缺失,能够用于商业应用、服务于公众的数据将远远小于理论上大数据能够采集和处理的数据,长远来看,将不利于大数据产业的形成与发展
在大数据时代,只要能产生价值的信息,都可以被加以开发与利用。特别在智慧城市建设中,只有不断盘活已有数据存量,充分利用大数据增量,才能提升智慧城市“大脑”的智慧水平,促使城市管理从“经验管理”转向“科学管理”。
然而在大数据的应用过程中,政府和企业对大数据的运用还存在着法律上的诸多难点,需要站在制度设计的层面统筹考虑,既要保护用户隐私和个人信息安全,同时最大程度上挖掘出信息本身的价值。
正如美国作家帕特里克·塔克尔在其作品《赤裸裸的未来》 一书中所述:“我们不可能朝未来技术挥舞拳头,更好的办法是,了解这些工具是如何运作的,了解它们可以如何合法地利用……同时,也要了解这些工具可能如何被滥用。”
发现问题
随着大数据应用的逐步开展和试行,如何用好大数据,保障个人信息安全,已经成为智慧城市推进的一个重要课题。
首先,数据隐私的保护和应用之间需要权衡。目前我国还缺乏合理开放利用用户数据的管理规范。《电信和互联网用户个人信息保护规定》 等均明确了用户信息保护及合理利用的原则,但是具体到数据开发利用的规则,比如对商业规则如何制定、经营者合理开发利用的法定情形如何确定、触犯用户的隐私权应当如何惩治等一系列管理问题,则没有相关规定。尽管大数据在技术层面的应用可以无限广阔,但由于合理利用规则的缺失,能够用于商业应用、服务于公众的数据将远远小于理论上能够采集和处理的数据,长远来看,将不利于大数据产业的形成与发展。
其次,数据的信息安全问题有待妥善解决。大数据应用必然会带来用户数据的使用和共享,多维的数据交互将意味着更大的信息泄露风险。一旦经营者保护用户信息不力或者遭遇信息窃取,势必引起用户恐慌,对智慧城市应用涉及的公民财产安全、国家安全产生重大威胁。
由于目前对大数据使用的法律缺位,政府、企业及个人作为使用或者提供大数据的主体,目前还没有明确的法律责任定位,对于用户信息问题产生的相关法律责任亦没有相关的罚则体系。
建设性建议
所以,我国应该结合中外个人信息保护立法经验,开展关于大数据的法律研究。通过法律实践,推进大数据应用规则的探索,根据法律研究的相关成果,制定具有可行性的大数据法律实施方案,通过相关法规或者规范的逐步实施,不断总结实践推进大数据的法律探索工作。比如开展对用户信息进行分层分级的试行,依据信息的识别度和重要性,逐步建立信息分级制度;试行用户信息的模糊化去特征化处理等,逐步明确模糊化处理数据的可应用范围等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04