
如何用正确姿势拥抱电力大数据
在能源互联网时代,无论是传统电力、油气公司还是科技、新能源企业,都在琢磨着向能源大数据投怀送抱,那么问题来了,怎样的拥抱姿势才正确?
【概念】当能源遇上大数据
如果说在互联网诞生时,有人号称“在网上没人知道你是一条狗”,那么在大数据时代,我们不但知道是不是一条狗,而且知道是公还是母、爱吃什么粮、什么时候睡……因为数据已经渗透到每一个行业和业务领域,不再只是生产过程中产生的信息和资料,而是成为重要的生产因素。
所谓“三分技术,七分数据,得数据者得天下”,我们无疑已进入一个数据为王的时代。由此延伸出来的能源大数据理念,就是将电力、石油、燃气等能源领域数 据以及人口、地理、气象等其他领域数据,进行综合采集、处理、分析与应用的相关技术与思想,它不仅是大数据技术在能源领域的深入应用,也是能源生产、消费 及相关技术革命与大数据理念的深度融合,将加速推进能源产业发展及商业模式创新。
目前,能源大数据理念尚处于逐步发展过程中,在当下,我们不妨先把视野放诸国外,寻觅一些他山之石,看看渐成模式的“国外的月亮”。
参考国网能源研究院的相关资料,国外能源大数据的应用模式大致可归为三类:
应用之一:对接智能电网优化需求响应
也就是通过将能源生产、消费数据与内部智能设备、客户信息、电力运行等数据结合,充分挖掘客户行为特征,提高能源需求预测准确性,发现电力消费规律,提升企业运营效率效益。
对于电网企业来说,这个模式能够提高企业经营决策中所需数据的广度与深度,增强对企业经营发展趋势的洞察力和前瞻性,有效支撑决策管理。
案例插播:AutoGrid帮助横跨美国的电力系统寻求需求方优化方案
在美国,对需求极为敏感的市场和电力系统项目并不需要实时检验,但当需求方管理日益成为全球电力运营的一个重要部分时,大数据应用也变得日益重要。而大数据公司AutoGrid的价值就在于此,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。
AutoGrid收集并处理其客户接入智能电网的 智能仪表等设备的数据,面向其客户或合作方提供需求响应优化及管理系统,实现实时资源预测、资源优化、自动需求响应、客户通知引擎和事后分析等功能。对于 发电企业的客户来说,AutoGrid可以预测发电情况和电网负荷,实现优化调度;对用电企业的客户而言,可以预测用电量,结合电价信息,进行需求响应。
应用之二:能源数据综合服务平台
该模式通过建设一个分析与应用平台,集成能源供给、消费、相关技术的各类数据,为包括政府、企业、学校、居民等不同类型参与方提供大数据分析和信息服务。该模式中,电网企业具有资金、技术、数据资源等方面优势,具备成为综合服务平台提供方的条件。
案例插播:美国得克萨斯州奥斯丁市实施的以电力为核心的智慧城市项目
该项目以智能电网设备为基础,采集了包括智能家电、电动汽车、太阳能光伏等类型详细用电数据以及燃气、供水数据,形成一个能源数据的综合服务平台。
奥斯丁智慧城市项目商业模式示意图
该项目已在节能环保、新技术推广、研发测试等方面发挥了重要的平台服务支撑作用。一是在消费者能源管理方面,为居民能源消费、住宅节能、交通出行等方面 提供优化建议,促进节能环保。例如,识别环保住宅的能耗降低比例可达27%;对居民太阳能电池板安装朝向进行优化,可使发电量增加49%等。二是为企业提 供电动汽车、智能家电等产品开发与技术测试服务。例如,将电力数据与汽车里程、分时电价、油价数据结合,可提供电动汽车性能分析、充电站布局优化,并根据 用户习惯确定最佳充电时间等服务。
应用之三:支撑智能化节能产品研发
该模式主要将能源大数据、信息通讯与工业制造技术结合,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,为用户提供付费低、能效高的能源使用与生活方式。
以智能家居产品为例,该模式既可为居民用户提供节能降费服务以及快捷便利的用户体验,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等方面发挥作用。正在美国走向普及的智能电表也 是一例,它具有电量结算功能,在整个电网范围内标识售电商和用户,可通过更换芯片更换售电商。该模式中,电网企业不一定具备产品研发优势,但可利用电力数 据采集与分析方面的优势,既可通过与设备制造商合作改进用户需求侧管理,也可通过共同参与研发并在产品销售中获取收益。
案例插播:美国NEST公司研发智能恒温器产品
该产品可以通过记录用户的室内温度数据,智能识别用户习惯,并将室温调整到最舒适状态。
NEST产品商业模式示意图
该模式可以实现产品制造商、电力企 业、用户三方共赢:作为产品制造商的NEST公司免费获得合作企业提供的部分电力数据,借此完善预测算法,并通过多种方式(恒温器设备、互联网、分析报 告)展示分析结果;电力企业在智能恒温器支持下,改进需求侧管理,节约发电装机与调峰成本;用户使用产品自动控制房间温度,并节省用电费用。据报道,售价 250美元的Nest恒温器每年可在电费和供热开支方面为家庭节省173美元,一年时间已节省了2.25亿千瓦时的能量,相当于2900万美元费用。
该商业模式已得到谷歌公司的高度关注和认可,目前NEST公司已被谷歌公司收购。谷歌公司力图借该模式推动其在新能源领域的全方位战略布局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04