
经验分享:“大数据”关键七问
本文为《大数据的关键思考》一书作者车品觉针对台湾企业运用大数据时可能遇到的问题,所提出的看法与建议。
问:对很多人来说,大数据只是个流行词,谁会需要大数据?
答:任何可以成为流行词的东西,肯定是社会对它充满巨大的期望和想像。大数据也不例外。建议企业在考虑使用大数据之前要从当前的问题着手,然后思考:
1. 理解业务中有没有一些决策做得不好,使用数据可以解决吗?
2. 在营运的工作流程中,有没有错误可以利用数据快速纠正呢?
3. 数据是否有可能帮助提升产品或服务的品质?甚至直接成为创新的元素?
以上几个问题,是希望大家明白大数据的运用和你对业务是否有深入理解相关。从这个角度去看,数据化营运无孔不入,跟谁都有关系。然而在使用数据之前,企业还要关注一些基本功,数据平台的软、硬体支援、如何做好数据的加工准备(包括新旧数据整合)、提炼数据到解决问题的能力。如是,才有资格谈大数据。所以,中小企业都应该用数据去认知自己哪些做得好或者不好(数据化营运),数据作为一个工具,可以帮助中小企业去了解自己,也可以优化业务。但是经营的本质还是取决于创始人的方向与管理,大家不能本末倒置,一昧期待透过大数据就能解决企业的所有挑战。
问:台湾的中小企业可以如何应用大数据?
答:大数据的力量来自分享、整合和产品化。例如,Google地图之所以能告诉你前面的路塞车,其实是有赖于每个使用 Google地图的位置分享。所以我认为政府的推动,可以让小企业减少得到数据的门槛、增加业界的数据共用,这样就更有利于让小企业也享受到大数据的科技。从产业链来看,小公司联盟,把数据统一,用数据来解决一些业内彼此都不能解决的问题。
问:台湾大多是中小企业,相较于大公司,中小企业做大数据的方式、思维有何不同?
答:不管是中小企业还是大企业,在运用任何一种新科技的时候必然要量力而为。而中小企业和大企业的区别,在于中小企业的资源肯定没有大企业那么多,所以,中小企业不容易像大公司一样有庞大的数据团队。因此,中小企业在运用数据的时候一定要有更稳妥的方法,注重使用数据的效益,可以尝试从小专案着手再逐步拓展。
问:在资讯泛滥的环境,数据愈来愈容易收集,但也代表「噪音」愈多。企业该如何找到核心数据并成功应用?
答:根据过去的经验,我认为初期不要贸然就开始一个非常大的大数据项目,而应该是要从小处开始。数据比较适合以小、具体、容易评估效果作为起点的专案,以此锻链自己收集、加工、使用数据来做决策,以及衡量这个数据价值的能力,即以小知大。从小的场景开始,用数据在商业场景中不断优化。
问:您曾提到大数据的应用讲求跨界和创新,在实践大数据的过程中,最困难的地方为何?
答:大数据应用讲求跨界和创新,更准确地说,大数据的价值来自可以从多角度来看同一件事,全景观察可以减少误差及创造新的机会。但并不是要求你能够认知到全部外面的世界,而是能让其他人的数据为你所用。大数据实践中最困难的地方在于你对自身的理解,再加上,隔行如隔山,外部整合回来的数据可能很有价值但同时也有很多噪音,大家并不完全清楚数据的来源和定义。
问:成为一名杰出的数据部门主管应具备哪些关键能力?
答:据我的观察,目前非常缺乏一种数据管理人才:对业务要有足够的理解、明白数据能为业务起什么作用、了解技术更新对价值产生的关系、数据收集到加工、新数据与历史的整合、使用数据的便利性等等。其中,对业务和商业的理解,绝对是成为数据主管所需要的基本条件,但若是想达到杰出的程度,肯定要懂得如何在人才匮乏的大数据行业中吸引和保留住人才的眼光和能力了。
问:如何培养对大数据的敏锐度?
答:当在公司遇到业务问题时,问问自己:现在拥有的数据能帮我解决问题吗?假定所有数据可以获取,我需要什么数据来解决问题?要怎么做才能更容易获取需要的数据呢?举例来说,我过去看到路上的交通状况时曾经想过,大城市里的计程车服务会不会有可能改善?我那时想着,如果计程车上有个灯能显示过去客户对他的评价,那么司机为了保持住好评价,应该会提供更好的服务水准,这就是数据可能解决的一个简单例子,下一步才是如何设计一个容易的方法让顾客去评价,而现在的叫车软体就是一个很好的实现案例。这是训练数据敏感度的好方法,也是过去10年我个人一直在用的方法──透过周遭事物训练数据敏感度,让数字「说话」。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11