
看互联网大数据时代的喜与忧
近来,“大数据”这个词非常的火热。随着科技与互联网的进步,数据似乎已经成为改变一家企业所必不可少的利器。尤其是随着大数据时代的到来,一些曾经非常棘手的问题都能够迎刃而解。比如Google能够先于美国的公共卫生机构发现流感的发生以及传播,甚至能够精确到某个地域,准确率曾高达97%,而这在小数据时代是完全无法想象的。
大数据时代无论是为企业还是为政府亦或是个人都带来了极大的便利。企业能够通过数据分析准确判断出客户的兴趣爱好、购买意向并以此来向客户推荐相关性最高的产品。而这其中做得最为成功的尤属亚马逊。亚马逊在最开始的时候采用的是图书评论形式来向用户推荐图书,但是当拥有大量的用户数据之后转而使用数据分析的形式来向用户推荐图书。成交率比之前有大大的提高,而且再也不需要评论编辑这样也可节约一定的人力成本。
在大数据时代,人们无需在苦苦寻找事物的因果关系。仅通过分析数据来得出相关关系即可,也就是说人们只要知其然而无需知其所以然。比如说,埃齐奥尼开发的Farecast系统能够从现有的航空公司大量的机票销售数据当中分析预测出什么时候购买机票最为便宜。但是却并不知道是什么让机票变得便宜了,而且这也并不是重点,人们只需要知道结果即可。
此外,大数据时代另一个进步在于“样本=全体”。与小数据时代的抽样统计相比,显然这样的方式更具有精确性。因为,大数据时代是将所有的数据作为样本区分析的,能够更加准确并且及时的发现人们曾经所发现不了的细节,而这些细节很可能会关乎成败。而且对于这些数据人们不再盲目追求精确,而是要包含一定的混杂数据。因为这也是属于大数据当中的一部分,只有数据越全面结果才能够越准确。
最为关键的是大数据在商业上面的价值,要比以往任何时候都显得尤为重要。数据的收集、分析也比以往要变得更为廉价、方便。企业只要通过大量的客户数据分析就能够准确制定下一步的经营策略,以及产品改进。比如,一家汽车企业能够通过对客户的坐姿数据的分析来制作汽车的防盗系统、银行能够根据你的社交数据来分析你是否能够偿还贷款。虽然这些看起来并无多少关联,但是大数据让这一切变为可能。
尽管大数据时代的到来有着诸多的好处,但是任何事物总有两面性。大数据时代在给我们带来惊喜的同时也给我们带来许多困扰。比如,我们个人的隐私问题,在大数据时代我们身边每时每刻都会有“第三只眼”在时刻盯着我们的一举一动。你的任何行为都有可能成为某个商家或是机构的分析数据并且随时有可能将之公诸于众。在大数据时代个人隐私或将成为一个“伪命题”。一旦被人非法利用,后果将不堪设想!
而且在大数据时代,人们的思维或许一时还很难转变。所以,如何正确分析并利用大数据就成为一个亟待解决的问题。尽管大数据能够帮人预测某种趋势,诸如根据某人过去的行为预测其可能犯罪之类的,但是我们并不能够依据这些预测就将其定罪。毕竟,事情还没有发生,尽管可以预防但是却不能够惩罚。
最后一点,在大数据时代人们会过于依赖对数据的分析。一旦数据出错,那么人们根据数据所做出的决策与判断都将是错误的。如果在企业运作当中,一次错误的数据分析很容易将企业毁于一旦。而且,数据分析让一切都变得标准化。但是,这并不是完全正确的。诸如一些产品设计,需要设计人员的灵感、需要一些艺术上的创造而不仅仅是一些冰冷的数据。Google在数据的运用上可谓是炉火纯青,但是Google也难免会犯一些常识性的错误。因为Google在招募人才的时候选择了统一的成绩数据标准作为招聘的主要依据。但是,这些并不足以表明一个人究竟是否是人才,但是Google却固执的坚守着这一错误行为。这就是对于大数据的过度依赖,所造成的。
我说过,一件事情总有两面性。大数据在帮人类解决问题的同时也在为人类创造新的问题,对于大数据的使用也同样如此。尽管大数据有着足够强大的力量,但是我们最需要改善的不是数据库的大小、精准与否,而是我们的思维,因为思维才是驾驭科技最根本的力量!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11