
大数据进入企业 应如何继承传统的数据处理方式-CDA数据分析师
当Hadoop进入企业,必须面对一个问题,那就是怎样解决和应对传统并成熟的IT信息架构。业内部,如何处理原有的结构化数据是企业进入大数据领域所面对的难题。
当Hadoop进入企业,必须面对一个问题,那就是怎样解决和应对传统并成熟的IT信息架构。以往MapReduce主要用来解决日志文件分析、互联网点击流、互联网索引、机器学习、金融分析、科学模拟、影像存储、矩阵计算等非结构化数据。但在企业内部,如何处理原有的结构化数据是企业进入大数据领域所面对的难题。企业需要既能处理非结构化数据,又能处理结构化数据的大数据技术。
在大数据时代,Hadoop主要用来处理非结构化数据,而如何处理传统IOE架构的结构化数据则成为企业面临的一个难题。在此背景下,既能处理结构化数据又能处理非结构化数据的SQL on Hadoop应运而生。
SQL on Hadoop是2013年最热门的话题,它由Cloudera Impala的发布版推到热议。目前,SQL on Hadoop正处于起步阶段,其技术实践方式很多样。而企业由于已经适应了在小数据上的灵活处理方式,转到Hadoop一下子变得无所适从,所以对SQL on Hadoop的呼声越来越大。SQL on Hadoop既要保证Hadoop性能,又要保证SQL的灵活性。关于SQL on Hadoop,业界有不同的看法,业内专业大数据公司也在积极的研究。
1.传统方式的DB on TOP
一些北美厂商采用传统方式的DB on TOP来解决SQL on Hadoop,即组合利用不同的计算框架面向不同的数据操作。其中以EMC Greenplum、Hadapt、Citus Data为代表。Hadapt以PostgreSQL架接在Hadoop上,来完成对结构化数据的查询。它提供了统一的数据处理环境,利用Hadoop的高扩展性和关系数据库的高速性,分开执行Hadoop和关系数据库之间的查询。Citus Data通过把多种数据类型转化成数据库的原生类型,运用分布式处理技术来完成查询。
图1、Hadapt
DB on Top 方式是业内同事解决结构化与非结构化数据的最初尝试,最早由Hadapt公司在2010年提出,也就绪了能够跑在Amazon EMR上的社区版。但是,其本质是数据在两种计算框架中分别存放,如图1所示,结构化数据存储于高性能关系型数据引擎(High-Performance Relational Engine for Structured Data),非结构化数据存储于Hadoop分布文件系统(Hadoop Distributed File System for Unstructured Data),对两种类型的数据交互依靠查询的切片执行,元数据的组织控制必然是系统扩展演变中的过度技术。
2.原生态Hive的优化
在开源社区方面,以Hortonworks的Stinger、Apache Drill为例。Hortonworks的Stinger通过对原生态Hive做改造,优化SQL查询速度,使其达到5-30秒,完成对SQL查询。Apache Drill通过对原生态的Hive做优化,完成对SQL的查询。
图2、Hortonworks Stinger
开源社区原生态的改造,目标是建立共同的计算框架和接口,目前各个开源项目虽然还只是孵化阶段,也还是获得了业内的支持,例如Apache的Drill项目,因开放的数据格式和查询语言,就获得了专业的Hadoop商业发行版供应商MapR的支持。
开源社区的发展和贡献,将成为推动SQL on Hadoop大规模落地行业的主要力量。
3.人机流程交互
在国内,对于SQL on Hadoop,主要是从SQL的数据处理流程和即席分析两方面来进行。在SQL的数据处理流程方面,很多操作是可以通过对数据处理流程进行预定义,然后对MapReduce作业进行批处理。例如ETL流程处理。ETL流程处理是对数据进行抽取、清洗、转换、加载的阶段。在此阶段,通过对数据流程进行预定义,在一个人机交互的友好界面上把MapReduce作业预先组装好,进行拖拽等操作形成工作流,来解决传统的SQL。
4.多级索引结构的即席查询
大数据的即席查询是大数据所面临的一个难题。在PB级别的数据,其查询效率和查询性能都不尽如意。在传统DW环境下,企业多采用OLAP cube。OLAP cube通过对数据进行预处理,将数据根据维度进行最大限度的聚类运算,通过对维度的配置,可以完成对小数据即席分析。但是对于PB级别的大数据环境,如何建立大数据的cube来兼顾前端应用的灵活性和查询效率呢? HBase自带的哈希快速定位功能可以实现即席查询的毫秒级响应和高并发。天云大数据通过在HBase上构建多级索引以及引用MPP方式基于统计分析的分区设计,不仅解决了HBase查询不灵活的特点,还能满足对PB级别大数据的即席查询。
对于操作型Hadoop,其对SQL on Hadoop 数据查询、响应等已经由存储磁盘级转移到内存上。由于其分布内存一致性要求,使得其发展比较缓慢,目前还不能达到企业应用级别。目前,分布式内存计算已渐趋繁荣,比较有代表的技术先锋如Splice Machine、SQLstream等。目前对于操作型Hadoop,业界正在积极探索中。
面对企业多年运营所积累的大量结构化数据,SQL on Hadoop无疑成为了分布式计算框架进入企业传统计算市场的敲门砖,但我们更清楚的认识到,Hadoop等主流分布式计算的舞台远不如此,它为企业计算定义了一个更为广阔的零消费市场(White Space)解决SQL之外的计算。
纷繁复杂的世界不可能简单地由平面展开的表结构来描述,SQL能够胜任查询和数值计算工作。但大量碎片的文字信息、影像图片如何计算?“买入”+“大涨”等于什么?“女性”+“Dior”等于“优雅”还是“性感”?能否用Sum、Group By、Join SQL来做非结构化信息的主题缩略、分类、聚类,我们将在后续文章中探讨这些话题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10