
大数据十项标准出台在即 大数据产业破局行动开启
近日,媒体报道,国内大数据产业标准化进程正在逐步推进当中。国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求、数据能力成熟度评价模型、多媒体数据语义描述要求、科学数据引用、数据溯源描述模型、数据质量评价指标和通用数据导入接口规范。其中前四项处在征求意见稿状态,中间四项已完成草案,最后两项还在草案大纲阶段。另外,大数据标准体系框架也已在征求意见稿阶段。
大数据是指不用随机分析法(抽样调查)方式,而采用所有数据进行分析处理的技术,其具有大量、高速、多样与价值的特点。与传统的BI分析相比,大数据分析能力更强,数据规模更大,分析方式更为先进。互联网时代,数据资源已经和能源一样,正日益受到重视,因此近年来,全球范围内,无论是跨国公司,还是各行业领域,以及各国政府,都在鼓吹“大数据时代”的到来。
2014年3月,大数据概念首次在我国《政府工作报告》中出现,随后在近期国务院发布了《促进大数据发展行动纲要》,《纲要》明确2018年底前建成国家政府数据统一开放平台,率先在信用、交通、医疗等重要领域实现公共数据资源合理适度向社会开放,我国大数据产业爆发在即。
不过,由于行业规则和行业标准缺失、数据的权属不明,当下大量的数据交易是不规范且有争议的,这阻碍了大数据产业发展。此时中国起草、制定与出台大数据相关文件,大数据产业政策顶层设计日益清晰,行业标准又将逐步形成,困扰大数据行业的瓶颈或将迎来部分解决,大数据产业破局行动开启。
前瞻产业研究院发布的《2015-2020年中国大数据产业发展前景与投资战略规划分析报告》指出,2014年全球大数据市场规模达到285亿美元,同比实现53.23%的增长,大数据将成为全球IT支出新增长点。我国大数据市场目前仍属于起步阶段,2014年我国大数据市场规模达到767亿元,仍有很大发展空间,随着“十三五”逐渐临近,大数据发展将进入政策出台的密集期,产业发展将获政策利好,预计2020年市场规模将达到8000亿元。
在政策为大数据破局的背景下,我国大数据产业有望在“十三五”期间迎来投资高潮。大数据产业可分为资源、技术与应用市场三大领域。上游数据资源是公司持续变现的资本;中游是数据技术公司,在大数据产业发展初期,硬件、基础软件、分析服务与信息安全等将成为直接受益的部分;下游应用市场包含互联网、政府、电信、金融、制造业、医疗保健、零售、交通等多个行业。其中在互联网、政府、金融、电信等行业的大数据市场就已经形成了巨大的需求,份额超过50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11