京公网安备 11010802034615号
经营许可证编号:京B2-20210330
《ibm spss modeler数据与文本挖掘实战》_数据分析师书籍推荐
《ibm spss modeler数据与文本挖掘实战》
图书简介:
本书主要包括两部分内容:在数据挖掘部分,重点介绍了各种数据挖掘方法的基本原理及应用,包括回归分析、时间序列分析、因子分析、决策树分析、判别分析、聚类分析、人工神经网络、贝叶斯网络以及社交网络分析等;在文本挖掘部分,重点介绍了文本挖掘的节点,以及具体的实现过程。每一章都详细介绍了数据和文本挖掘的基本原理和分析过程,同时在实例中也介绍了SPSS Modeler中大部分节点的使用方法及应用步骤。
本书与同类书籍相比,安排了较多的实例,使读者能够边学边练,在短时间内就可以有一个较大的提高,方便读者熟悉SPSS Modeler的基本操作,并通过系统的案例使读者掌握应用技巧。
本书对于高校理工学科、经济金融学科及数量分析方面的学生,以及数据挖掘和分析方面的研究人员和从业人员等,具有很强的可读性、可操作性与可使用性,尤其适合商业销售、经济管理、社会研究和人文教育等行业的相关人员阅读。
目录
第1部分数据挖掘篇
第1章数据挖掘概述 3
1.1什么是数据挖掘 3
1.1.1数据挖掘的定义 4
1.1.2数据挖掘的发展阶段 5
1.2与传统技术的比较 8
1.2.3数据挖掘和OLAP 9
1.2.4数据挖掘和Web挖掘 10
1.3常用的数据挖掘软件 11
1.3.1SAS EM 12
1.3.2SPSS Modeler 13
1.3.3Intelligent Miner 13
1.4应用实例:目标客户分析 15
1.4.1研究方法 15
1.4.2数据分析 15
1.4.3研究结论 26
第2章SPSS Modeler软件概述 27
2.1软件简介 27
2.1.1软件发展 28
2.1.2软件界面 30
2.1.3软件特点 35
2.1.4软件功能 37
2.1.5软件算法 39
2.1.6高级功能 41
2.1.7软件安装 42
2.2行业应用 50
2.2.1通信行业 50
2.2.2ZF行业 52
2.2.3金融行业 53
2.2.4制造行业 54
2.2.5医药行业 56
2.2.6教育科研 56
2.2.7市场调研 57
2.2.8连锁零售 57
2.3数据挖掘流程 58
2.3.1业务理解 58
2.3.2数据理解 59
2.3.3数据准备 60
2.3.4建立模型 61
2.3.5评估模型 61
2.3.6应用模型 62
2.4应用实例:药物效果研究 62
2.4.1研究方法 63
2.4.2数据分析 63
2.4.3研究结论 69
第3章SPSS Modeler基础操作 70
3.1数据输入 70
3.1.1数据库 71
3.1.2可变文件 73
3.1.3固定文件 75
3.1.4SAS文件 76
3.1.5Statistics文件 77
3.1.6Excel文件 77
3.2数据流操作 78
3.2.1生成数据流 78
3.2.2添加和删除节点 79
3.2.3连接数据流 79
3.2.4修改连接节点 80
3.2.5执行数据流 81
3.3图形制作 82
3.3.1散点图 82
3.3.2直方图 84
3.3.3网络图 85
3.3.4评估图 87
3.4应用实例:产品销售预测 88
3.4.1研究方法 88
3.4.2数据分析 88
3.4.3研究结论 99
第4章回归分析 100
4.1回归分析模型概述 100
4.1.1模型定义 101
4.1.2模型应用 102
4.1.3建模步骤 103
4.1.4注意事项 103
4.2应用实例:客户流失因素分析 104
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27