京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 保护的不仅仅是数据
根据CNNIC 2015年互联网发展状况统计报告显示,截至2015年6月,我国网民规模达6.68亿,半年新增网民1894万人。互联网普及率为48.8%。
中国互联网已经进入“大数据”时代,“大数据”除了众所周知的可挖掘性之外,他带来了数据增长量和增长速度的新挑战。根据国际数据公司(IDC)的报告,全世界的数据以每两年翻一番的速度在增长。
在刚结束的2015(第十四届)中国互联网大会上,“互联网+”这一新型商业模式上升为国家的战略发展目标。“互联网+”将推动移动互联网、云计算、大数据、物联网等与现代制造业结合,促进电子商务、工业互联网和互联网金融业健康发展,引导互联网企业拓展市场。
“大数据”和“互联网+”的发展将迎来新一轮工业革命。随着加入到“互联网+”的企业越来越多,数据增长量越来越大、速度越来越快,服务器和存储的需求量将不断增加,互联网信息中心的建设迎来新的挑战。
“数据”是发展“互联网+”和“大数据”的基础。
数据重要吗
对于数据的定义,其实比大多数人理解的更广泛。不仅包含我们显而易见的数据(广义),还包含一些隐性的数据(狭义)。
显性数据(广义):显而易见,可广泛流通的,被大众所使用,包括演示文稿、 图片、音/视频等媒体文档、账单等财务信息、客户的记录、朋友圈、微博、网络社区、网站页面等。
隐性数据(狭义):IT专业人员管理的,承载显性数据的数据,包括系统配置、应用软件、补丁、更新脚本、Web 站点配置、数据库以及搭载数据库的应用程序、云端等。
那么,在“互联网+”时代,到底是显性数据比较重要还是隐性数据比较重要呢?
“互联网+”时代,已经由以前的“业务实现”转型为更加强调“用户体验”。而用户体验的好坏则取决于如何很好的对显性数据进行优化,如何从大数据中挖掘出不同用户的需求,进而生产出优良的显性数据针对性的提供给用户。
普通用户在访问显性数据的同时,往往不会注意到其是如何产生的和其运行的基础。但是对于拥抱“互联网+”和“大数据”企业则不得不考虑用来搭载显性数据的基础架构设施以及应用程序的可持续性和稳定性。稳定可持续的隐性数据是企业发展的必要条件。携程网和支付宝的危机给大家敲响警钟,企业必须保护这些设施以及搭载显性数据的应用程序免遭潜在的危险,包括病毒、恶意攻击、断电或者意外的宕机和业务中断。企业应寻求一种方便且有效的途径保护隐性数据。
优良的显性数据可提供更好的用户体验,为企业带来更多的直接收入。隐性数据提供稳定的基础设施和应用程序,保证企业互联网业务的可持续性发展。可以说,两者相辅相成,隐性数据承载显性数据,显性数据依托于隐性数据。
所以,对于前面的问题“到底是显性数据比较重要还是隐性数据比较重要?”,我的答案是“两者同样重要”。
数据是否得到了充分的保护?
日常生活中,我们所看到的朋友圈、网络社区、社交网站,给客户展示的幻灯片、产品视频,采访或旅途中拍摄的图片或者音视频文件,我们所直接看到或听到的数据,均可称为显性数据。这类数据与我们关系最为紧密和重要,也是最容易保护的数据。我们已经会使用同步功能备份手机的通讯录,备份拍摄的照片或者视频到可信云端。一些有预见性的人,会定期的将个人电脑上的文件复制到移动硬盘中作为备份副本保存。
对于企业,IT管理员通常会利用一些工具,将雇员们集中存放在服务器上的作业文档进行备份。而一些更规范的公司还会在雇员使用的计算机内部署数据保护产品,这样雇员们就不必担心他们的作业丢失、损坏或者笔记本电脑失窃了,同时也给雇员提供了恢复工作到最近时间点的机会。
当今,大部分的中国网民和中国企业采用上述的方式在保护自己的数据。值得注意的是,这种方式仅仅是对显性数据的保护,我们很容易处理这些可见的显性数据,因为这些显性数据很容易控制,我们只需要简单的步骤就可以随意的将它们备份另外的位置。而对于隐性数据的保护却被大家所忽略。
我们知道如何打开办公文档、照片和音/视频文件,但是如何保护用作打开这些文件的程序呢?
我们为雇员提供的作业文档的保护,但是如何让雇员能够快速的从应用程序和操作系统故障中恢复工作呢?
安克诺斯提供了一个有效的途径保护打开文档的应用程序和承载业务的操作系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30