京公网安备 11010802034615号
经营许可证编号:京B2-20210330
足球社交大数据分析的背后
互联网的发展为数据收集创造了平台,并不断扩大数据收集的范围和规模。而社交平台的发展则让每个人都有机会成为发声者,企业有更多方式和渠道获得每个个体的反馈并提升反馈速度。在新互联网时代,大数据正在改变着人们的日常生活。
在本届世界杯上,大数据分析技术不光帮助德国队取得了冠军,在赛事报道上,社交、移动和大数据技术也正在带来无限的可能性。 过去,传统媒体主要以单向的方式传播信息,例如通过电视转播世界杯比赛,通过报纸报道比赛进展,发表足球评论等。而随着社交和移动技术的发展,每一位普通球迷都可以利用互联网和社交媒体,以自己独特的角度对一场比赛进行记录。调查发现,在社交媒体上,大多数人和在真实世界里完全不一样,在现实生活中很多人反而会隐藏一些方面,在社交媒体上的展现更接近真实自我。这一切变化,让人与人、人与媒体之间的沟通与连接也随之改变。
在2014年世界杯上,腾讯首先突破,通过与IBM合作,利用社交媒体数据分析系统对网络上球迷热议话题、球迷性格进行分析,利用大数据分析技术改变传统的报道方式。 大数据技术读懂球迷心声 我们日常生活中产生的数据,20%是结构化的数据,例如企业通过内部IT系统收集的信息或者通过机器和传感器收集的数据,而在数据资源中高达80%是非结构化数据,例如电子邮件、图像、音频、视频以及社交平台上的信息等。传统的大数据分析面对的是如何管理、调配海量数据的问题,而与传统的结构化数据相比,非结构化的社交数据是人产生的,这其中不仅包括成文的句子,还包括网络用语、表情,甚至错别字等。例如,在社交平台上,球迷对于一个球星的态度不会是明确的喜欢或者厌恶,而会以各种各样不同的方式表达出来,其真正的态度究竟是支持还是否定,是需要IBM通过分析给出结论的。
如何让机器理解大量的人类语言背后隐藏的情感?将大量的非结构化数据转换为结构化数据是社交大数据分析面临的首要难题,这不仅需要IT技术的支持,也需要心理学、语义分析等知识和技术的综合运用。 为深度挖掘社交平台上形式丰富的非结构化信息,提取有指导意义的洞察,IBM构建了Blue Pulse系统,利用机器自学习方法和自然语言分析技术,倾听网民“心声”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04