京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你需要知道的7个大数据定义
大数据究竟是什么?很多人可能仍然有些混淆,本文让我们来看看大数据的一些主要的定义。首先要注意的是,行业内的所有人都普遍认同,大数据不只是更多的数据。
(1) 最初的大数据
大数据的特征可以用很多词来描述。2001年Doug Laney最先提出“3V”模型, 包括数量 (Volume)、速度(Velocity)和种类(Variety)。在那以后,业界很多人把3V扩展到了11V,还包括有效性、真实性、价值和可见性等。
(2) 大数据:技术
为什么12年前的老术语突然被放在聚光灯下?这不仅是因为我们现在拥有比十年前更多的数量、速度和种类。而是因为大数据受到新技术的推动,特别是快速发展的开源技术,例如Hadoop和其他存储和处理数据的NoSQL方式。
这些新技术的用户需要一个术语来将它们区别于以前的技术,于是大数据成了他们的最佳选择。如果你去参加大数据会议,你肯定会发现,涉及关系型数据库的会议会很少,无论他们鼓吹多少个V。
(3)大数据与数据的区别
大数据技术的问题是,大数据有些含糊不清,以至于行业中的每个供应商都可以跳进来声称自己的技术是大数据技术。以下是两种很好的方法来帮助企业理解现在的大数据与过去单纯的大数据的区别。
交易、交互和观察:这是由Hortonworks公司负责企业战略的副总裁Shaun Connolly提出的。交易是我们过去收集、存储和分析的主要数据。交互是人们点击网页等操作得到的数据。观察是自动收集的数据。
过程介导数据、人类产生的信息以及机器生成的数据。
(4)大数据:信号
SAP公司的Steve Lucas认为,应该根据意图和时机来划分这个世界,而不是根据数据的类型。“旧世界”主要是关于交易,当这些交易被记录时,我们已经无法对它们采取任何行动:企业都在不断管理“失效的数据”。而在“新世界”,企业可以使用新的“信号”数据来预测将会发生什么,并进行干预来改善情况。
相关的案例有,追踪社交媒体上人们对品牌的态度,以及预测性维护(用复杂的算法帮助你决定何时需要更换零部件)。
(5) 大数据:机会
这是来自451 Research的Matt Aslett,他将大数据定位为“之前因为技术限制而被忽略的数据”。(虽然在技术上,Matt使用了“暗数据”,而不是大数据,但已经非常接近)。这是笔者最喜欢的定义,因为它符合大部分文章和讨论中的说法。
(6) 大数据:隐喻
Rick Smolan在其书中写道,大数据是“帮助这个星球生成神经系统的过程,其中我们人类只是另一种类型的传感器”。很深奥吧?
(7) 大数据:新瓶装旧酒
很多项目基本上是使用以前的技术,这些过去被称为BI或者分析的技术突然跳入大数据的行列中。
底线:尽管大家对大数据的定义有很多争议,但所有人都同意这个事实:大数据是一个大事件,在未来几年将带来巨大的机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01