
失业率(UnemploymentRate)是指失业人口占劳动人口的比率(一定时期全部就业人口中有工作意愿而仍未有工作的劳动力数字),旨在衡量闲置中的劳动产能,是反映一个国家或地区失业状况的主要指标。通过对历年各国和地区的失业率数据 行分析,我们可以对全世界在这几十年的经济波动情况有个大致的了解,同时我们对世界几个大国的失业情况进行了模型拟合,最后我们还探究了中国从改革开放到2010年这30年的失业率的波动与通胀率的关系。
PART ONE——聚类分析
代码如下:
libname ep ‘e:\saslx’;
proc import out=ep.saswork
datafile=”e:\saslx\saswork.xls”
dbms=excel replace;
sheet=”sheet1$”;
getnames=yes;
run;
proc print;
id country;
run;
data s1;
input coun$1-10 year91 year92 year93 year94 year95 year96 year97 year98 year99 year00 year01 year02 year03 year04 year05 year06 year07 year08 year09 year10 ;
datalines;
中国 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1
中国香港 1.8 2 2 1.9 3.2 2.8 2.2 4.7 6.2 4.9 5.1 7.3 7.9 6.8 5.6 4.8 4.0 3.6 5.2 4.3
中国澳门 3 2.2 2.1 2.5 3.6 4.3 3.2 4.6 6.3 6.8 6.4 6.3 6 4.9 4.1 3.8 3.1 3.0 3.6 2.8
澳大利亚 9.6 10.5 10.7 9.5 8.4 8.3 8.4 7.8 7 6.4 6.8 6.4 5.9 5.5 5 4.8 4.4 4.2 5.6 5.2
奥地利 3.5 3.7 4.3 3.6 3.7 4.1 4.2 4.2 3.8 3.6 3.6 4 4.3 4.9 5.2 4.7 4.4 3.8 4.8 4.4
保加利亚 11.1 15.3 21.4 20 15.7 13.5 13.7 12.2 14.1 16.3 19.4 17.6 13.7 12 10.1 9 6.9 5.6 6.8 10.2
加拿大 10.4 11.3 11.2 10.4 9.5 9.6 9.1 8.3 7.6 6.8 7.2 7.7 7.6 7.2 6.8 6.3 6.0 6.1 8.3 8.0
捷克 4.1 2.6 4.3 4.3 4 3.9 4.8 6.5 8.7 8.8 8.1 7.3 7.8 8.3 7.9 7.1 5.3 4.4 6.7 7.3
丹麦 10.6 11.3 12.4 8 7 6.9 6.1 5.5 5.5 4.6 4.8 4.7 5.5 5.6 5 4.1 4.0 3.4 6.0 7.4
芬兰 6.6 11.6 16.2 16.4 15.2 14.4 12.5 11.3 10.1 9.7 9.1 9.1 9 8.8 8.3 7.7 6.8 6.4 8.2 8.4
法国 9 10 11.1 12.3 11.6 12.1 12.3 11.8 10 8.5 7.8 7.9 8.5 8.9 8.9 8.8 8.0 7.4 9.1 9.3
德国 6.6 7.9 9.5 10.3 10.1 8.8 9.8 9.7 8.8 7.9 7.9 8.7 10 11 11.1 10.3 8.6 7.5 7.7 7.1
希腊 7.7 8.7 9.7 9.6 10 10.3 10.3 10.8 11.9 11.2 10.4 9.9 9.3 10.2 9.6 8.8 8.1 7.2 9.5 12.5
匈牙利 8.5 9.8 11.9 10.7 10.2 9.9 8.7 7.8 7 6.4 5.7 5.8 5.7 6.1 7.2 7.5 7.4 7.8 10.0 11.2
冰岛 2.5 4.3 5.3 5.3 4.9 3.7 3.9 2.7 2 2.3 2.3 3.3 3.4 3.1 2.6 2.9 2.3 3.0 7.2 7.6
爱尔兰 14.7 15.1 15.7 14.7 12.2 11.9 10.3 7.8 5.7 4.3 3.7 4.2 4.4 4.4 4.3 4 4.0 5.2 11.7 13.5
以色列 10.6 11.2 10 7.8 6.9 6.7 7.7 8.5 8.9 8.8 9.4 10.3 10.7 10.4 9 8.4 7.3 6.1 7.6 6.6
意大利 10.9 11.4 9.8 10.7 11.3 11.4 11.5 11.7 11.4 10.5 9.5 9 8.7 8 7.7 6.8 6.1 6.7 7.8 8.4
日本 2.1 2.2 2.5 2.9 3.2 3.4 3.4 4.1 4.7 4.7 5 5.4 5.3 4.7 4.4 4.1 3.9 4.0 5.0 5.1
韩国 2.3 2.4 2.8 2.4 2 2 2.6 6.8 6.3 4.4 4 3.3 3.6 3.7 3.7 3.5 3.2 3.2 3.6 3.7
荷兰 7 5.5 6.2 6.8 7.1 6.6 5.5 4.3 3.6 3.1 2.5 3.1 4 5 5.1 4.2 3.5 3.0 3.4 4.5
新西兰 10.3 10.3 9.5 8.1 6.3 6.1 6.6 7.5 7 6.1 5.4 5.3 4.8 4 3.8 3.8 3.7 4.2 6.1 6.5
挪威 5.5 5.9 6 5.4 4.9 4.8 4 3.2 3.2 3.4 3.6 3.9 4.5 4.5 4.6 3.4 2.5 2.6 3.1 3.5
菲律宾 9 8.6 8.9 8.4 8.4 7.4 7.9 9.8 9.8 11.2 11.1 11.4 11.4 11.8 7.8 8 7.3 7.4 7.5 7.3
波兰 11.8 13.6 14 14.4 13.3 12.3 11.2 10.5 13.9 16.1 18.2 19.9 19.6 19 17.7 13.8 9.6 7.1 8.2 9.6
葡萄牙 4.1 4.1 5.4 6.7 7.1 7.2 6.7 4.9 4.4 3.9 4 5 6.3 6.7 7.6 7.7 8.0 7.6 9.5 10.8
罗马尼亚 3 8.2 10.4 8.2 8 6.7 6 6.3 6.8 7.1 6.6 8.4 7 8 7.2 7.3 6.4 5.8 6.9 7.3
俄罗斯联邦 0.1 5.2 5.9 8.1 9.5 9.7 11.8 13.3 12.6 9.8 8.9 7.9 8 7.8 7.2 7.2 6.1 6.3 8.4 7.5
西班牙 16.4 18.4 22.6 24.1 22.9 22.1 20.6 18.6 15.6 13.9 10.6 11.5 11.5 11 9.2 8.5 8.3 11.3 18.0 20.1
土耳其 8.1 8.3 8.8 8.4 7.5 6.5 6.7 6.8 7.7 6.5 8.4 10.3 10.5 10.3 10.3 9.9 10.3 11.0 14.0 11.9
瑞典 3 5.2 8.2 8 7.7 8 8 6.5 5.6 4.7 4 4 4.9 5.5 6 5.4 6.1 6.2 8.3 8.4
泰国 2.7 1.4 1.5 1.3 1.1 1.1 0.9 3.4 3 2.4 2.6 1.8 1.5 1.5 1.4 1.2 1.2 1.2 1.5 1.0
英国 8.4 9.7 10.3 9.6 8.6 8.2 7.1 6.1 6 5.4 4.9 5 4.8 4.7 4.6 5.4 5.3 5.3 7.5 7.8
美国 6.8 7.5 6.9 6.1 5.6 5.4 4.9 4.5 4.2 4 4.8 5.8 6 5.5 5.1 4.6 4.6 5.8 9.3 9.6
委内瑞拉 9.5 7.7 6.7 8.7 10.3 11.8 11.4 11.2 14.5 13.2 12.8 16.2 16.8 13.9 11.4 9.3 7.5 6.9 7.9 8.5
run;
proc cluster data =s1 method=average pseudo;
id coun;
proc tree;
run;
PST2伪t2值,在G=3和G=1处有峰值,由于最佳分类为它上面一种,故表明它支持4分类和2分类。PSF伪F值,在G=2和G=4处较大,也支持前面的结论。
倘若分为4类,则有
第一类:中国、日本、奥地利、韩国、中国香港、中国澳门、冰岛、荷兰、挪威、泰国、捷克
第二类:澳大利亚、英国、丹麦、新西兰、加拿大、匈牙利、葡萄牙、瑞典、美国、罗马尼亚、芬兰、法国、意大利、希腊、德国、以色列、菲律宾、土耳其、俄罗斯联邦、爱尔兰
第三类:保加利亚、波兰、委内瑞拉
第四类:西班牙
失业率数字被视为一个反映整体经济状况的指标,而它又是每个月最先发表的经济数据,所以失业率指标被称为所有经济指标的“皇冠上的明珠”,它是市场上最为敏感的月度经济指标。
从第一类分析出有许多亚洲国家都分为一类,可见地域差异对于失业率还是有影响,也可以推测同一地域的经济状况相似,因此失业率也比较相近;第一类也参杂了少量欧洲国家。
第二类中全是发达国家,各自的所在大洲也不一样,但是,从失业率也可以反映他们的国家经济情况变化在20年来应该是相近的。
第三类是第二类中未提及的欧洲发达国家与南美洲的一个国家合为一类,这一点上是有些奇怪的。
第四类西班牙独自为一类,观察数据发现,它的失业率一直以来居高不下,推测它可能一直都保持着这种水平,即经济也似乎是不会变动太大的。
proc fastclus data =s1 maxclusters=4 out=fcl;
id coun;
proc sort data=fcl out = sortfcl;
by cluster;
proc print data=sortfcl;
run;
用快速聚类法也得到了同样的分类结果,推测针对这些国家,分为4类确实比较适合。
PART TWO——模型拟合
我们想研究各国的失业率符合什么样的模型,从而根据这个模型可以对失业率进行分析和预测,最后,如果几乎所有的国家的失业率都属于同一种模型,那我们就可以推断这是失业率随着年份的一般发展规律。由于国家众多,所以选取我们感兴趣的一些国家来做。
选取中国作为研究对象。
先通过画图看应该用哪种模型来拟合比较好。为了画图方便,把1991年看作是第一年,1992年看作是第二年,依次类推,2010年看作是第二十年。
从图中可以发现图形大致为S型。采用 logistic模型 。
由图中的结果可以看出,模型拟合的很好,可以大致认为中国的失业率符合logistic模型。可能原因是随着90年年以后教育力度的加强,高素质人才愈来愈多,导致失业率不断上升,但是可能某一段时间的退休人数增加,加上国家的行业变得多样化,企业数量增多,对人才的需求大,阻止了失业率的增长速度,但是还不足以抵消。
下面研究澳大利亚的失业率。
很显然,logistic模型不再满足澳大利亚的失业率变化,试用指数模型拟合一
发现结果还比较让人满意。由于对澳大利亚的国情不是很了解,不知道为什么他们的失业率会逐年下降,不过可以肯定的是,他们的政府起了很大作用。
再分析一下日本
Logistic模型和指数模型多不再满足,用三角函数来拟合
模型的拟合结果还让人满意。据我所知,日本在六七十年代经历了经济的极端繁荣之后就开始走下坡,特别是到了九十年代末二十一世纪初的时候,各行各业失业的情况十分严重,可能这后经过一系列的经济调整,情况有所转变,但是到了08年,受到全球经济危机的冲击,失业率又上升了。
从以上三个实例可以看出,失业率没有符合某一具体模型,而是根据不同国家的不同情况而有所变化。
PART THREE——中国失业率曲线分析
data china;
input y1980-y2010;
datalines;
4.9 3.8 3.2 2.3 1.9 1.8 2 2 2 2.6 2.5 2.3 2.3 2.6 2.8 2.9 3 3.1 3.1 3.1 3.1 3.6 4 4.3 4.2 4.2 4.1 4.0 4.2 4.3 4.1;
proc transpose out=china(rename=(_name_=year col1=rate));
run;
proc gplot;
plot rate*year;
run;
上图所示为中国从改革开放至今(1980年-2010年)各年的失业率。
单从上图曲线来看,可看出1980年的失业率较高,为4.9%,从1980年到1984年,失业率逐年降低,下降的速率也很快;1984年到1988年失业率呈现平稳波动;1988年到1989年间失业率陡增;1990年到2000年失业率呈现平缓上升的趋势,2000年到2003年,失业率上升的速度加快;2003年到2010年失业率保持平稳波动。
一般情况下,失业率下降,代表整体经济健康发展,利于货币升值;失业率上升,便代表经济发展放缓衰退,不利于货币升值。若将失业率配以同期的通胀指标来分析,则可知当时经济发展是否过热,会否构成加息的压力,或是否需要通过减息以刺激经济的发展。
通货膨胀(Inflation)指在纸币流通条件下,因货币供给大于货币实际需求,也即现实购买力大于产出供给,导致货币贬值,而引起的一段时间内物价持续而普遍地上涨现象。
libname mywork ‘e:\sas\sas作业’;
proc import out=rate
datafile=’e:\SAS\通胀率.xls’
dbms=excel replace;
sheet=’sheet1$’;
getnames=yes;
run;
proc gplot;
plot _col1*_col0;
run;
上图所示为改革开放近30年来的通胀率曲线。
下面我们对通胀率和失业率两个图进行对比分析:
1984年以前失业率的降低与通胀率似乎没有多大关系,我认为这主要是改革开放的新政策极大促进了就业。特殊政策的影响太大了。从1984年以后来分析失业率与通胀率的关系比较合理。
从1984年到2000年,通胀率波动很大,失业率也处于一种波动状态,通胀率开始上升的一年内,失业率有略微下降。通货膨胀对刺激就业的作用是短期的,长期来说这种关系并不成立。而从两个图的对比中,我们也会发现,持续的通货膨胀反而导致失业率上升。在经济学中,有这样一个基本原理:社会面临通货膨胀与失业的短期权衡取舍。大多数经济学家认为在货币注入的短期效应会降低失业率。我们结合2000年到2009年这10年的数据来看,可看出政府在权衡取舍中,并没有选择通过发行过多货币来刺激就业,而是选择了维持较低的通胀率,但这同时这就意味着失业情况无法从货币刺激这个方面得到改善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27