
"大数据"市场监管新模式 网络订餐"互联网+信用"
8月底,浦东市场监管局与网络订餐平台“饿了么”启动“互联网+信用监管”项目,率先探索政府数据走出“深闺”,与第三方平台实现数据多方共享。记者获悉,试点近一个月下来,仅在先行试点的陆家嘴地区,浦东市场监管局已向“饿了么”推送商户信息371家,数据量达到12万。“饿了么”也已将政府监管信息以20%的比重纳入其信用评价体系。浦东新区走出了通过“大数据”,参与食品安全监管过程的第一步。浦东市场监管局透露,本月底提前将该项目从陆家嘴地区覆盖至浦东全区。
“脸谱”反映食品安全状况
细心的用户张先生最近在使用“饿了么”订餐时发现,平台上的一些商户信息中都不约而同地挂上了“脸谱”符号,点开“脸谱”,商户的营业执照、餐饮服务许可证和食品安全监督公示信息跃然屏上。这些数据正是由浦东市场监管局与“饿了么”对接,并向全社会开放共享的。“脸谱”分为笑脸、平脸和哭脸三种,形象地反映了商户的食品安全状况,便于消费者选择优质、安全的餐饮服务。
说起数据开放共享的缘起,第三方网络订餐平台“饿了么”CEO 张旭豪颇为感慨:“我们曾接到过消费者反映,称有的商家上传的证照信息和实际经营状态是不一致的。”张旭豪表示,“饿了么”一直设法加强对入网商户的规范化管理,要求经营者必须上传证照扫描件。但是很多信息还是无法准确掌握,在资质审查时确实有困难。
浦东新区市场监管局副局长管捍东也表示,之所以选择“饿了么”试点“互联网+信用监管”项目,除了考虑到“饿了么”规模、影响都比较大,也是因为“仅凭第三方平台线上核查,或是单纯依靠政府部门线下监管,力量都是有限的”。
项目试水一个月效果如何?消费者孙女士直言,以往订餐时餐厅的信息并不透明,自己只能参考订单数量和用户点评来判断餐厅的还坏,“现在就直观多了,我肯定会优先选择资质齐全、带‘笑脸’的餐厅。”孙女士不知道的是,她做出的个体选择还将汇集成市场选择,成为食品安全监管的间接推动者。如果发现公示信息与实际情况不符,消费者也可以及时向平台和监管部门反映,促进行业规范和市场监管到位。
“黑暗料理”将被清退
据介绍,上海浦东新区先行在餐饮店数量多、监管难度大的浦东陆家嘴地区试点“互联网+信用监管”项目。消费者通过第三方平台进行网络订餐时,就能对接政府“大数据”,参与食品安全监管过程。陆家嘴地区汇集了近900家餐饮单位,接近浦东全区的十分之一:“饿了么”在陆家嘴地区“饿单”日均接单量占全区30%,目前,浦东市场监管局已向“饿了么”推送了陆家嘴地区商户371家,内容包括工商信息、许可证信息和监管信息,数据量达到12万。
与此同时,“饿了么”已将政府监管信息以20%的比重纳入其新制定的信用评价体系,以此对商户进行综合信用质量评分和排序,并将配套采取关闭网店、停止网上经营、通报政府部门等手段,加强对入驻商户的线上管理和联合惩戒,以提高第三方平台餐饮服务的整体诚信度。
“饿了么”方面表示,今后将杜绝无证照餐饮入网经营,新入网商户需先上传相关证照,经平台方线下现场核查、实名登记后,再与浦东市场监管局数据库线上比对。只有数据完全匹配,才能在线上开店经营。
“饿了么”会员王女士最近就遇到了这样一件事。她经常光顾的一家平台商户突然不见了踪影。后来她才知道,原来这是一家卫生状况很差、无证照的“黑暗料理”,现已被市场监管部门和第三方平台联手清退了。
据初步统计,“互联网+信用监管”项目试点一个月以来,陆家嘴地区“笑脸”商户订单量平均上涨约15%,而资质不全的无脸谱商户订单量有一定比例的下降。
“互联网+信用监管”只是第一步
浦东新区市场监管局相关负责人透露,一个月间,监管局共接到涉及“饿了么”的食品安全类投诉35起,均通过平台同步流向“饿了么”,进行解决。监管部门在线下处置实体商户的同时,“饿了么”也同步完成处置和回访,并对所涉商户作出线上信用评价记录、督促整改。
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
而浦东新区监管部门与“饿了么”启动的“互联网+信用监管”项目也计划于本月底推广到整个浦东新区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11