京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python命令行参数解析模块optparse使用实例
这篇文章主要介绍了Python命令行参数解析模块optparse使用实例,本文讲解了增加选项(add_option())、行为(action)、设置默认值(default)、生成帮助提示(help)、设置boolean值、错误处理、选项组(Grouping Options)等内容,需要的朋友可以参考下
示例
if __name__ == "__main__":
main()
增加选项(add_option())
定义短选项
定义长选项
如果定义
命令行格式可以有以下形式
解析后结果
解析(parse_args())
options 解析后的参数,以字典形式保存
args 不能解析的参数,以列表形式保存
行为(action)
●store 默认行为,保存值到dest
●“store_const” 保存常量
●“append” append this option's argument to a list
●“count” increment a counter by one
●“callback” call a specified function
设置默认值(default)
生成帮助提示(help)
提供help选项即可,可以用parser.print_help()打印出来
设置boolean值
支持store_true和store_false两个行为
如果遇到-v,verbose=True;如果遇到-q,verbose=False
错误处理
选项组(Grouping Options)
格式如下
class optparse.OptionGroup(parser, title, description=None)
提示结果如下
Usage: <yourscript> [options] arg1 arg2
Options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)
-f FILE, --filename=FILE
write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or
expert [default: intermediate]
Dangerous Options:
Caution: use these options at your own risk. It is believed that some
of them bite.
-g Group option.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03