京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2018年值得关注的5个大数据趋势
随着大数据系统日益高效,每年的大数据趋势变得更具开创性。根据调研机构Forrester Research最近发布的营销报告,随着组织的领导者开始意识到大量使用大数据技术所需的工作量,人工智能(AI)正在超越其流行术语的阶段。研究报告指出,实施人工智能来实现目标需要精确的部署、规划和治理。尽管如此,该报告预测随着大数据趋势进一步倾向于人工智能,该技术将有巨大的改进。实际上,Forrester公司预计将重新设计数据分析和管理角色,这将改变智能交付物流和创建新的信息市场。这种预测很有可能发生,因为多达70%的企业计划在2018年实施人工智能技术,比去年增加了50%以上。
然而,最近“福布斯”杂志发布的一篇文章从另一个角度看待人工智能的发展。这篇文章将人工智能作为一种资源,向消费者提供建议,为供应商提供暂定条款,并在工作场所引导员工,无需人工干预。该文章还预测,人工智能将对非结构化信息提供可操作的分析,这些信息可与大数据系统解析的结构化信息源的评估相媲美。此外,更多企业可以在未来几个月内获得使用数百TB的现有非结构化数据的能力。然而,2018年也是许多拥有这种信息量的公司(通常称为数据湖)将要求人工智能计划的投资回报的一年,如果资源不能产生可量化的改进,则可能会取消投资回报。
这只是对今年的人工智能和大数据发展提供了一个管窥。以下五个趋势让人们更加了解对2018年大数据发展的预期:
趋势1:增强网络安全
在法规要求的推动下,医疗护理提供商以惊人的速度推进了电子健康记录的实施。不幸的是,医疗保健网络安全违规行为一直在增长。事实上,近90%的医疗服务提供者在过去两年中都经历过数字安全漏洞的攻击,每个漏洞平均成本损失为220万美元。
由于特定医疗信息的高价值,网络攻击者为此被吸引。这种情况将会让医院承担失去患者信任的风险,迫使医疗护理提供商为他们的数字领域提供安全支持。
趋势2:改善社区警务
在美国,犯罪率在过去20年急剧下降。执法人员将这种改进归功于1994年推出的一种名为CompStat的大数据技术。该系统分析美国各地的统计数据,帮助警察更好地了解和打击犯罪。尽管有了这些重大改进,但官员们认为CompStat仍然没有发挥其全部潜力。当工程师们提供额外的能力时,将会有更多的改进,这使得警察部门能够监控过度使用武力的数据,并帮助预防犯罪。
趋势3:扩展的物联网(IoT)
如今,从家用电器到高级安全系统的各种电子设备都连接到互联网,并共享实时数据。这些连接的设备组合起来形成物联网(IoT)。物联网现在正在发展成为吸引企业注意力的成熟资源。到2021年,物联网支出预计将攀升至6万亿美元,分析师预测未来几年将出现大量敏感的智能网络设备。这一发展已经为企业使用人工智能和大数据解决方案利用物联网产生的信息洪流奠定了基础。事实上,分析师预测,2018年至2030年间,物联网将为全球生产总值贡献15万亿美元。
趋势4:大众的人工智能
人工智能正在超越企业巨头的唯一权限。一种新的“即插即用”人工智能业务解决方案即将上市并已被许多组织使用。这项创新技术包括广泛使用的聊天机器人和关键搜索引擎思想者等应用程序。
专家预测,大约75%的开发人员将在2018年年底之前将人工智能技术应用到他们的工作中。微软和亚马逊在开发Gluon网络项目方面的合作促进了这种趋势发展,它是一个用于人工智能开发者的开源的、易于使用的学习资源。由于这种透明度,大数据技术的市场已经接近340亿美元的收入。
趋势5:促进新职业角色的发展
首席数字官(CDO)的角色在2018年将具有更多的权重。目前,数据是全球最有价值的资源之一,首席数字官(CDO)的职责包括从数据中提取价值,更接近企业的行政领导人。资金来源相对于其组织规模而言较小的首席数字官(CDO)将面临在未来一年提出必要的可衡量和可行的结果方面的挑战。幸运的是,这些专业人员将拥有人工智能的灵活性和大数据分析的基础,以推动这项事业的发展成为现实。首席数字官(CDO)具有睿智和敏锐的能力,利用人工智能开发结构化的和非结构化的大数据集,为所有业务单元提供解决方案,将获得最有前途的职业发展。
企业、非营利组织和政府机构必须了解是什么因素激励消费者和客户,因为他们的需求和愿望会随着时间的推移而发生变化。正因为如此,大数据加上人工智能技术将比以往更加趋向研发的前沿,为组织利益相关者提供可行的报告,这些报告是从大量专有数据中获得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27